# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # Also available under a BSD-style license. See LICENSE. import torch from torch_mlir_e2e_test.torchscript.framework import TestUtils from torch_mlir_e2e_test.torchscript.registry import register_test_case from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export # ============================================================================== class ReduceSumModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, a): return torch.sum(a) @register_test_case(module_factory=lambda: ReduceSumModule()) def ReduceSumModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 5)) # ============================================================================== class ReduceSumDtypeModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float64, True), ]) def forward(self, a): return torch.sum(a, dtype=torch.float32) @register_test_case(module_factory=lambda: ReduceSumDtypeModule()) def ReduceSumDtypeModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 5).to(torch.float64)) # ============================================================================== class ReduceSumDimIntListModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, a): return torch.sum(a, (0, 1)) @register_test_case(module_factory=lambda: ReduceSumDimIntListModule()) def ReduceSumDimIntListModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 5)) # ============================================================================== class ReduceSumDimIntListDtypeModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float64, True), ]) def forward(self, a): return torch.sum(a, (0, 1), dtype=torch.float32) @register_test_case(module_factory=lambda: ReduceSumDimIntListDtypeModule()) def ReduceSumDimIntListDtypeModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 5).to(torch.float64)) # ============================================================================== class ReduceSumDimIntListKeepDimModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, a): return torch.sum(a, (1, 2), keepdim=True) @register_test_case(module_factory=lambda: ReduceSumDimIntListKeepDimModule()) def ReduceSumDimIntListKeepDimModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 5)) # ============================================================================== class ReduceMeanDtypeModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float64, True), ]) def forward(self, a): return torch.mean(a, dtype=torch.float32) @register_test_case(module_factory=lambda: ReduceMeanDtypeModule()) def ReduceMeanDtypeModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 5).to(torch.float64)) # ============================================================================== class ReduceMaxAlongDim(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float64, True), ]) def forward(self, a): return torch.ops.aten.max(a, 1)[0] @register_test_case(module_factory=lambda: ReduceMaxAlongDim()) def ReduceMaxAlongDim_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 5).to(torch.float64)) # ============================================================================== class ReduceMaxAlongDimNegative(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float64, True), ]) def forward(self, a): return torch.ops.aten.max(a, 1)[0] @register_test_case(module_factory=lambda: ReduceMaxAlongDimNegative()) def ReduceMaxAlongDimNegative_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 5, low=-10, high=10).to(torch.float64)) # ============================================================================== class ReduceMaxKeepDim(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float64, True), ]) def forward(self, a): return torch.ops.aten.max(a, 1, keepdim=True)[1] @register_test_case(module_factory=lambda: ReduceMaxKeepDim()) def ReduceMaxKeepDim_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 5).to(torch.float64)) # ============================================================================== class ReduceMaxKeepDimReturnBoth(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, a): return torch.ops.aten.max(a, 1, keepdim=True) @register_test_case(module_factory=lambda: ReduceMaxKeepDimReturnBoth()) def ReduceMaxKeepDimReturnBoth_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 5, low=-10, high=-5)) # ============================================================================== class ReduceMaxAllDims(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, a): return torch.ops.aten.max(a) @register_test_case(module_factory=lambda: ReduceMaxAllDims()) def ReduceMaxAllDims_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 5, low=-10, high=-5))