# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception import argparse import re import sys from torch_mlir.torchscript.e2e_test.framework import run_tests from torch_mlir.torchscript.e2e_test.reporting import report_results from torch_mlir.torchscript.e2e_test.registry import GLOBAL_TEST_REGISTRY # Available test configs. from torch_mlir.torchscript.e2e_test.configs import ( NpcompBackendTestConfig, NativeTorchTestConfig, TorchScriptTestConfig ) from npcomp.compiler.pytorch.backend import is_iree_enabled IREE_ENABLED = is_iree_enabled() if IREE_ENABLED: from npcomp.compiler.pytorch.backend.iree import IreeNpcompBackend from npcomp.compiler.pytorch.backend.refjit import RefjitNpcompBackend from .xfail_sets import XFAIL_SETS # Import tests to register them in the global registry. # Make sure to use `tools/torchscript_e2e_test.sh` wrapper for invoking # this script. from . import basic from . import vision_models from . import mlp from . import batchnorm from . import quantized_models from . import elementwise def _get_argparse(): config_choices = ['native_torch', 'torchscript', 'refbackend'] if IREE_ENABLED: config_choices += ['iree'] parser = argparse.ArgumentParser(description='Run torchscript e2e tests.') parser.add_argument('--config', choices=config_choices, default='refbackend', help=f''' Meaning of options: "refbackend": run through npcomp's RefBackend. "iree"{'' if IREE_ENABLED else '(disabled)'}: run through npcomp's IREE backend. "native_torch": run the torch.nn.Module as-is without compiling (useful for verifying model is deterministic; ALL tests should pass in this configuration). "torchscript": compile the model to a torch.jit.ScriptModule, and then run that as-is (useful for verifying TorchScript is modeling the program correctly). ''') parser.add_argument('--filter', default='.*', help=''' Regular expression specifying which tests to include in this run. ''') parser.add_argument('-v', '--verbose', default=False, action='store_true', help='report test results with additional detail') return parser def main(): args = _get_argparse().parse_args() # Find the selected config. if args.config == 'refbackend': config = NpcompBackendTestConfig(RefjitNpcompBackend()) elif args.config == 'iree': config = NpcompBackendTestConfig(IreeNpcompBackend()) elif args.config == 'native_torch': config = NativeTorchTestConfig() elif args.config == 'torchscript': config = TorchScriptTestConfig() # Find the selected tests, and emit a diagnostic if none are found. tests = [ test for test in GLOBAL_TEST_REGISTRY if re.match(args.filter, test.unique_name) ] if len(tests) == 0: print( f'ERROR: the provided filter {args.filter!r} does not match any tests' ) print('The available tests are:') for test in GLOBAL_TEST_REGISTRY: print(test.unique_name) sys.exit(1) # Run the tests. results = run_tests(tests, config) # Report the test results. failed = report_results(results, XFAIL_SETS[args.config], args.verbose) sys.exit(1 if failed else 0) if __name__ == '__main__': main()