//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // Also available under a BSD-style license. See LICENSE. // //===----------------------------------------------------------------------===// #include "torch-mlir/Dialect/TorchConversion/Transforms/Passes.h" #include "mlir/Conversion/Passes.h" #include "mlir/Dialect/Func/Transforms/Passes.h" #include "mlir/Dialect/Linalg/Passes.h" #include "mlir/Dialect/MemRef/Transforms/Passes.h" #include "mlir/Dialect/Tosa/Transforms/Passes.h" #include "mlir/Pass/PassManager.h" #include "mlir/Transforms/Passes.h" #include "torch-mlir/Conversion/TorchToLinalg/TorchToLinalg.h" #include "torch-mlir/Conversion/TorchToSCF/TorchToSCF.h" #include "torch-mlir/Conversion/TorchToArith/TorchToArith.h" #include "torch-mlir/Conversion/TorchToTMTensor/TorchToTMTensor.h" #include "torch-mlir/Conversion/TorchToTosa/TorchToTosa.h" #include "torch-mlir/Conversion/TorchConversionToMLProgram/TorchConversionToMLProgram.h" #ifdef TORCH_MLIR_ENABLE_MHLO #include "mhlo/transforms/passes.h" #include "torch-mlir/Conversion/TorchToMhlo/TorchToMhlo.h" #endif #include "torch-mlir/Dialect/Torch/Transforms/Passes.h" using namespace mlir; using namespace mlir::torch; using namespace mlir::tosa; //===----------------------------------------------------------------------===// // Pass registration //===----------------------------------------------------------------------===// namespace reg { #define GEN_PASS_REGISTRATION #include "torch-mlir/Dialect/TorchConversion/Transforms/Passes.h.inc" } // end namespace reg void mlir::torch::registerTorchConversionPasses() { reg::registerPasses(); mlir::PassPipelineRegistration<>( "torch-backend-to-linalg-on-tensors-backend-pipeline", "Pipeline lowering torch backend contract to linalg-on-tensors backend " "contract.", TorchConversion::createTorchBackendToLinalgOnTensorsBackendPipeline); mlir::PassPipelineRegistration<>( "torch-backend-to-tosa-backend-pipeline", "Pipeline lowering torch backend contract to TOSA backend " "contract.", TorchConversion::createTorchBackendToTosaBackendPipeline); #ifdef TORCH_MLIR_ENABLE_MHLO mlir::PassPipelineRegistration( "torch-backend-to-mhlo-backend-pipeline", "Pipeline lowering torch backend contract to MHLO backend " "contract.", TorchConversion::createTorchBackendToMhloBackendPipeline); #endif } void TorchConversion::createTorchBackendToLinalgOnTensorsBackendPipeline( OpPassManager &pm) { // Lower to linalg + guards which is the input to codegen backends. // We do this first as it tends to involve pattern-matching against constants, // (e.g. dimensions which must be constant in a ranked programming model) // and those constants get somewhat obscured by TorchToArith. pm.addNestedPass(createConvertTorchToTMTensorPass()); pm.addNestedPass(createConvertTorchToLinalgPass()); pm.addNestedPass(createConvertTorchToSCFPass()); pm.addNestedPass(createConvertTorchToArithPass()); pm.addNestedPass(createConvertTorchConversionToMLProgramPass()); pm.addNestedPass(memref::createExpandOpsPass()); // Clean up any non-canonical code introduced above.. pm.addNestedPass(createCanonicalizerPass()); // Resolve `dim` ops on tensors (which currently live in the `memref` // dialect for some reason -- we don't have memrefs at this level). pm.addNestedPass( memref::createResolveShapedTypeResultDimsPass()); // The resolution of `dim` ops tends to create identical ops. CSE them. pm.addNestedPass(createCSEPass()); // Finish the type conversion from `torch` types to the types of the // linalg-on-tensors backend contract. pm.addPass(TorchConversion::createFuncBackendTypeConversionPass()); pm.addNestedPass(createCanonicalizerPass()); pm.addNestedPass( TorchConversion::createFinalizingBackendTypeConversionPass()); // Verify that we have lowered to the form that linalg on tensors backends // expect. This fails compilation (signalPassFailure) if the IR is not in the // correct form. pm.addPass(TorchConversion::createVerifyLinalgOnTensorsBackendContractPass()); } void TorchConversion::createTorchBackendToTosaBackendPipeline( OpPassManager &pm) { pm.addNestedPass(createConvertTorchToTosaPass()); // Perform rank broadcasting so TosaToLinalg pass works pm.addNestedPass(createTosaMakeBroadcastablePass()); // Clean up any non-canonical code introduced above.. pm.addNestedPass(createCanonicalizerPass()); // The resolution of `dim` ops tends to create identical ops. CSE them. pm.addNestedPass(createCSEPass()); // Finish the type conversion from `torch` types to the types of the // TOSA backend contract. pm.addPass(TorchConversion::createFuncBackendTypeConversionPass()); pm.addNestedPass(createCanonicalizerPass()); pm.addNestedPass( TorchConversion::createFinalizingBackendTypeConversionPass()); // Verify that we have lowered to the form that TOSA backends // expect. This fails compilation (signalPassFailure) if the IR is not in the // correct form. pm.addPass(TorchConversion::createVerifyTosaBackendContractPass()); } #ifdef TORCH_MLIR_ENABLE_MHLO void TorchConversion::createTorchBackendToMhloBackendPipeline( OpPassManager &pm, const TorchConversion::MhloBackendPipelineOptions &options) { pm.addNestedPass(createConvertTorchToMhloPass( options.enableStaticShape, options.enableI32Index)); // Clean up any non-canonical code introduced above.. pm.addNestedPass(createCanonicalizerPass()); // The resolution of `dim` ops tends to create identical ops. CSE them. pm.addNestedPass(createCSEPass()); // Convert CHLO ops to MHLO ops pm.addNestedPass(mhlo::createChloLegalizeToHloPass()); // Clean up any non-canonical code introduced above.. pm.addNestedPass(createCanonicalizerPass()); // The resolution of `dim` ops tends to create identical ops. CSE them. pm.addNestedPass(createCSEPass()); // Finish the type conversion from `torch` types to the types of the // MHLO backend contract. pm.addPass(TorchConversion::createFuncBackendTypeConversionPass()); pm.addNestedPass( TorchConversion::createFinalizingBackendTypeConversionPass()); // Verify that we have lowered to the form that MHLO backends // expect. This fails compilation (signalPassFailure) if the IR is not in the // correct form. pm.addPass(TorchConversion::createVerifyMhloBackendContractPass()); } #endif