# -*- Python -*- # This file is licensed under a pytorch-style license # See frontends/pytorch/LICENSE for license information. from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR import npcomp.frontends.pytorch as torch_mlir import npcomp.frontends.pytorch.test as test # RUN: python %s | FileCheck %s class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.maxpool2d = nn.MaxPool2d(2,2) #self.dropout1 = nn.Dropout2d(0.25) #self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = self.maxpool2d(x) #x = self.dropout1(x) x = x.view((4,9216)) x = self.fc1(x) x = F.relu(x) #x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def main(): model = Net() tensor = torch.randn((4, 1, 28, 28)) # CHECK: PASS! fwd check fwd_path = test.check_fwd(model, tensor) if __name__ == '__main__': main()