# -*- Python -*- # This file is licensed under a pytorch-style license # See frontends/pytorch/LICENSE for license information. from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR import npcomp.frontends.pytorch as torch_mlir import npcomp.frontends.pytorch.test as test # RUN: python %s | FileCheck %s class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(28*28, 50) self.fc2 = nn.Linear(50, 50) self.fc3 = nn.Linear(50, 10) def forward(self, x): x = x.view(-1, 28*28) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) return F.log_softmax(self.fc3(x), dim=1) def main(): device = torch_mlir.mlir_device() model = Net() tensor = torch.randn((64, 1, 28, 28),requires_grad=True) # CHECK: PASS! fwd check fwd_path = test.check_ref(model, tensor) target = torch.ones((64), dtype=torch.long) loss = F.nll_loss # CHECK: PASS! back check test.check_back(fwd_path, target, loss) # CHECK: PASS! fc1_weight_grad check test.compare(model.fc1.weight.grad, fwd_path[0].fc1.weight.grad, "fc1_weight_grad") if __name__ == '__main__': main()