# -*- Python -*- # This file is licensed under a pytorch-style license # See frontends/pytorch/LICENSE for license information. import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import npcomp.frontends.pytorch as torch_mlir import npcomp.frontends.pytorch.test as test # RUN: python %s | FileCheck %s class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1, bias=True) self.conv2 = nn.Conv2d(32, 64, 3, 1, bias=True) #self.maxpool2d = nn.MaxPool2d(2,2) self.fc1 = nn.Linear(9216*4, 128, bias=True) self.fc2 = nn.Linear(128, 10, bias=True) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) #x = self.maxpool2d(x) x = x.view((64,9216*4)) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def main(): model = Net() tensor = torch.randn((64, 1, 28, 28), requires_grad=True) # CHECK: PASS! fwd check fwd_path = test.check_fwd(model, tensor) target = torch.ones((64), dtype=torch.long) loss = F.nll_loss # CHECK: PASS! back check test.check_back(fwd_path, target, loss) # CHECK: PASS! weight_grad check test.compare(model.conv2.weight.grad, fwd_path[0].conv2.weight.grad, "weight_grad") # CHECK: PASS! bias_grad check test.compare(model.conv2.bias.grad, fwd_path[0].conv2.bias.grad, "bias_grad") # CHECK: PASS! fc1_weight_grad check test.compare(model.fc1.weight.grad, fwd_path[0].fc1.weight.grad, "fc1_weight_grad") if __name__ == '__main__': main()