// RUN: npcomp-opt <%s -convert-torch-to-linalg -split-input-file -verify-diagnostics | FileCheck %s // ----- // CHECK-LABEL: func @torch.aten.flatten.using_ints$basic( // CHECK-SAME: %[[TENSOR:.*]]: !torch.vtensor<[3,3,2,2,3,3,5],f32>) -> !torch.vtensor<[3,3,?,3,5],f32> { // CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[TENSOR]] : !torch.vtensor<[3,3,2,2,3,3,5],f32> -> tensor<3x3x2x2x3x3x5xf32> // CHECK: %[[COLLAPSED:.*]] = linalg.tensor_collapse_shape %[[BUILTIN_TENSOR]] {{\[\[}}0], [1], [2, 3, 4], [5], [6]] : tensor<3x3x2x2x3x3x5xf32> into tensor<3x3x12x3x5xf32> // CHECK: %[[DYNAMIC:.*]] = tensor.cast %[[COLLAPSED]] : tensor<3x3x12x3x5xf32> to tensor<3x3x?x3x5xf32> // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[DYNAMIC]] : tensor<3x3x?x3x5xf32> -> !torch.vtensor<[3,3,?,3,5],f32> // CHECK: return %[[RESULT]] : !torch.vtensor<[3,3,?,3,5],f32> func @torch.aten.flatten.using_ints$basic(%arg0: !torch.vtensor<[3,3,2,2,3,3,5],f32>) -> !torch.vtensor<[3,3,?,3,5],f32> { %int2 = torch.constant.int 2 %int4 = torch.constant.int 4 %0 = torch.aten.flatten.using_ints %arg0, %int2, %int4 : !torch.vtensor<[3,3,2,2,3,3,5],f32>, !torch.int, !torch.int -> !torch.vtensor<[3,3,?,3,5],f32> return %0 : !torch.vtensor<[3,3,?,3,5],f32> } // ----- // CHECK-LABEL: func @torch.aten.flatten.using_ints$basic_negative( // CHECK-SAME: %[[TENSOR:.*]]: !torch.vtensor<[3,3,2,2,3,3,5],f32>) -> !torch.vtensor<[3,3,?,3,5],f32> { // CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[TENSOR]] : !torch.vtensor<[3,3,2,2,3,3,5],f32> -> tensor<3x3x2x2x3x3x5xf32> // CHECK: %[[COLLAPSED:.*]] = linalg.tensor_collapse_shape %[[BUILTIN_TENSOR]] {{\[\[}}0], [1], [2, 3, 4], [5], [6]] : tensor<3x3x2x2x3x3x5xf32> into tensor<3x3x12x3x5xf32> // CHECK: %[[DYNAMIC:.*]] = tensor.cast %[[COLLAPSED]] : tensor<3x3x12x3x5xf32> to tensor<3x3x?x3x5xf32> // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[DYNAMIC]] : tensor<3x3x?x3x5xf32> -> !torch.vtensor<[3,3,?,3,5],f32> // CHECK: return %[[RESULT]] : !torch.vtensor<[3,3,?,3,5],f32> func @torch.aten.flatten.using_ints$basic_negative(%arg0: !torch.vtensor<[3,3,2,2,3,3,5],f32>) -> !torch.vtensor<[3,3,?,3,5],f32> { %int-5 = torch.constant.int -5 %int-3 = torch.constant.int -3 %0 = torch.aten.flatten.using_ints %arg0, %int-5, %int-3 : !torch.vtensor<[3,3,2,2,3,3,5],f32>, !torch.int, !torch.int -> !torch.vtensor<[3,3,?,3,5],f32> return %0 : !torch.vtensor<[3,3,?,3,5],f32> } // ----- // CHECK-LABEL: func @torch.aten.flatten.using_ints$flatten_front( // CHECK-SAME: %[[TENSOR:.*]]: !torch.vtensor<[3,3,2,2],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[TENSOR]] : !torch.vtensor<[3,3,2,2],f32> -> tensor<3x3x2x2xf32> // CHECK: %[[COLLAPSED:.*]] = linalg.tensor_collapse_shape %[[BUILTIN_TENSOR]] {{\[\[}}0, 1, 2], [3]] : tensor<3x3x2x2xf32> into tensor<18x2xf32> // CHECK: %[[DYNAMIC:.*]] = tensor.cast %[[COLLAPSED]] : tensor<18x2xf32> to tensor // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[DYNAMIC]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[RESULT]] : !torch.vtensor<[?,?],f32> func @torch.aten.flatten.using_ints$flatten_front(%arg0: !torch.vtensor<[3,3,2,2],f32>) -> !torch.vtensor<[?,?],f32> { %int0 = torch.constant.int 0 %int2 = torch.constant.int 2 %0 = torch.aten.flatten.using_ints %arg0, %int0, %int2 : !torch.vtensor<[3,3,2,2],f32>, !torch.int, !torch.int -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func @torch.aten.flatten.using_ints$flatten_back( // CHECK-SAME: %[[TENSOR:.*]]: !torch.vtensor<[3,3,2,2],f32>) -> !torch.vtensor<[?,12],f32> { // CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[TENSOR]] : !torch.vtensor<[3,3,2,2],f32> -> tensor<3x3x2x2xf32> // CHECK: %[[COLLAPSED:.*]] = linalg.tensor_collapse_shape %[[BUILTIN_TENSOR]] {{\[\[}}0], [1, 2, 3]] : tensor<3x3x2x2xf32> into tensor<3x12xf32> // CHECK: %[[DYNAMIC:.*]] = tensor.cast %[[COLLAPSED]] : tensor<3x12xf32> to tensor // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[DYNAMIC]] : tensor -> !torch.vtensor<[?,12],f32> // CHECK: return %[[RESULT]] : !torch.vtensor<[?,12],f32> func @torch.aten.flatten.using_ints$flatten_back(%arg0: !torch.vtensor<[3,3,2,2],f32>) -> !torch.vtensor<[?,12],f32> { %int1 = torch.constant.int 1 %int-1 = torch.constant.int -1 %0 = torch.aten.flatten.using_ints %arg0, %int1, %int-1 : !torch.vtensor<[3,3,2,2],f32>, !torch.int, !torch.int -> !torch.vtensor<[?,12],f32> return %0 : !torch.vtensor<[?,12],f32> } // ----- // CHECK-LABEL: func @torch.aten.flatten.using_ints$rank0( // CHECK-SAME: %[[TENSOR:.*]]: !torch.vtensor<[],f32>) -> !torch.vtensor<[1],f32> { // CHECK: %[[BUILTIN_TENSOR:.*]] = torch_c.to_builtin_tensor %[[TENSOR]] : !torch.vtensor<[],f32> -> tensor // CHECK: %[[COLLAPSED:.*]] = linalg.tensor_expand_shape %[[BUILTIN_TENSOR]] [] : tensor into tensor<1xf32> // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[COLLAPSED]] : tensor<1xf32> -> !torch.vtensor<[1],f32> // CHECK: return %[[RESULT]] : !torch.vtensor<[1],f32> func @torch.aten.flatten.using_ints$rank0(%arg0: !torch.vtensor<[],f32>) -> !torch.vtensor<[1],f32> { %int0 = torch.constant.int 0 %0 = torch.aten.flatten.using_ints %arg0, %int0, %int0 : !torch.vtensor<[],f32>, !torch.int, !torch.int -> !torch.vtensor<[1],f32> return %0 : !torch.vtensor<[1],f32> }