// RUN: npcomp-opt <%s -convert-torch-to-linalg -split-input-file -verify-diagnostics | FileCheck %s // CHECK-LABEL: func @torch.aten.mm$basic( // CHECK-SAME: %[[LHS_VTENSOR:.*]]: !torch.vtensor<[?,?],f32>, // CHECK-SAME: %[[RHS_VTENSOR:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,2],f32> { // CHECK: %[[LHS:.*]] = torch.to_builtin_tensor %[[LHS_VTENSOR]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[RHS:.*]] = torch.to_builtin_tensor %[[RHS_VTENSOR]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[C0:.*]] = constant 0 : index // CHECK: %[[LHS_DIM_0:.*]] = tensor.dim %[[LHS]], %[[C0]] : tensor // CHECK: %[[C1:.*]] = constant 1 : index // CHECK: %[[LHS_DIM_1:.*]] = tensor.dim %[[LHS]], %[[C1]] : tensor // CHECK: %[[C0:.*]] = constant 0 : index // CHECK: %[[RHS_DIM_0:.*]] = tensor.dim %[[RHS]], %[[C0]] : tensor // CHECK: %[[C1:.*]] = constant 1 : index // CHECK: %[[RHS_DIM_1:.*]] = tensor.dim %[[RHS]], %[[C1]] : tensor // CHECK: %[[EQ:.*]] = cmpi eq, %[[LHS_DIM_1]], %[[RHS_DIM_0]] : index // CHECK: assert %[[EQ]], "mismatching contracting dimension for torch.aten.mm" // CHECK: %[[INIT_TENSOR:.*]] = linalg.init_tensor [%[[LHS_DIM_0]], %[[RHS_DIM_1]]] : tensor // CHECK: %[[CF0:.*]] = constant 0.000000e+00 : f32 // CHECK: %[[ZEROFILL:.*]] = linalg.fill(%[[CF0]], %[[INIT_TENSOR]]) : f32, tensor -> tensor // CHECK: %[[MATMUL:.*]] = linalg.matmul ins(%[[LHS]], %[[RHS]] : tensor, tensor) outs(%[[ZEROFILL]] : tensor) -> tensor // CHECK: %[[CASTED:.*]] = tensor.cast %[[MATMUL]] : tensor to tensor // CHECK: %[[RESULT_VTENSOR:.*]] = torch.from_builtin_tensor %[[CASTED]] : tensor -> !torch.vtensor<[?,2],f32> // CHECK: return %[[RESULT_VTENSOR]] : !torch.vtensor<[?,2],f32> func @torch.aten.mm$basic(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,2],f32> { %0 = torch.aten.mm %arg0, %arg1 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,2],f32> return %0 : !torch.vtensor<[?,2],f32> } // ----- // If the operands are missing dtype, we cannot lower it. func @torch.aten.mm$no_convert$missing_dtype(%arg0: !torch.vtensor, %arg1: !torch.vtensor) -> !torch.vtensor { // expected-error@+1 {{failed to legalize}} %0 = torch.aten.mm %arg0, %arg1 : !torch.vtensor, !torch.vtensor -> !torch.vtensor return %0 : !torch.vtensor } // ----- // Correctly handle the case that operands are statically the wrong rank // (rank 1 vs rank 2 expected for matmul.) func @torch.aten.mm$no_convert$wrong_rank(%arg0: !torch.vtensor<[?],f32>, %arg1: !torch.vtensor<[?],f32>) -> !torch.vtensor<[?,?],f32> { // expected-error@+1 {{failed to legalize}} %0 = torch.aten.mm %arg0, %arg1 : !torch.vtensor<[?],f32>, !torch.vtensor<[?],f32> -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // If the result is missing dtype, we cannot lower it. func @torch.aten.mm$no_convert$result_missing_dtype(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.vtensor<[?,?],f32>) -> !torch.vtensor { // expected-error@+1 {{failed to legalize}} %0 = torch.aten.mm %arg0, %arg1 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32> -> !torch.vtensor return %0 : !torch.vtensor }