# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # Also available under a BSD-style license. See LICENSE. # RUN: %PYTHON %s | FileCheck %s import torch import torch_mlir class TanhModule(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): return torch.ops.aten.tanh(x) tanh_example_input = torch.ones(2, 3) # Simplest case: One example argument. print(torch_mlir.compile(TanhModule(), tanh_example_input)) # CHECK-LABEL: @forward # CHECK: torch.aten.tanh %{{.*}} : !torch.vtensor<[2,3],f32> -> !torch.vtensor<[2,3],f32> # Use a TensorPlaceholder to represent dynamic axes. placeholder = torch_mlir.TensorPlaceholder.like(tanh_example_input, dynamic_axes=[1]) print(torch_mlir.compile(TanhModule(), placeholder)) # CHECK-LABEL: @forward # CHECK: torch.aten.tanh %{{.*}} : !torch.vtensor<[2,?],f32> -> !torch.vtensor<[2,?],f32> # Explicitly construct a TensorPlaceholder. placeholder = torch_mlir.TensorPlaceholder([-1, 2], torch.float32) print(torch_mlir.compile(TanhModule(), placeholder)) # CHECK-LABEL: @forward # CHECK: torch.aten.tanh %{{.*}} : !torch.vtensor<[?,2],f32> -> !torch.vtensor<[?,2],f32> # Basic smoke test for the raw output type. print(torch_mlir.compile(TanhModule(), tanh_example_input, output_type=torch_mlir.OutputType.RAW)) # CHECK: torch.nn_module { # CHECK: } : !torch.nn.Module<"{{.*}}.TanhModule"> class MmModule(torch.nn.Module): def __init__(self): super().__init__() def forward(self, lhs, rhs ): return torch.ops.aten.mm(lhs, rhs) # N > 1 inputs. mm_example_inputs = [torch.ones(2, 3), torch.ones(3, 4)] print(torch_mlir.compile(MmModule(), mm_example_inputs)) # CHECK-LABEL: @forward # CHECK: torch.aten.mm %{{.*}}, %{{.*}} : !torch.vtensor<[2,3],f32>, !torch.vtensor<[3,4],f32> -> !torch.vtensor<[2,4],f32> # Mixes Tensor's and TensorPlaceholder's. mm_dynamic_inputs = [mm_example_inputs[0], torch_mlir.TensorPlaceholder.like(mm_example_inputs[1], dynamic_axes=[1])] print(torch_mlir.compile(MmModule(), mm_dynamic_inputs)) # CHECK-LABEL: @forward # CHECK: torch.aten.mm %{{.*}}, %{{.*}} : !torch.vtensor<[2,3],f32>, !torch.vtensor<[3,?],f32> -> !torch.vtensor<[2,?],f32>