// RUN: torch-mlir-opt -torch-globalize-object-graph -split-input-file %s | FileCheck %s // Basic case. // CHECK-LABEL: torch.global_slot.module_initializer { // CHECK: %[[TRUE:.*]] = torch.constant.bool true // CHECK: %[[INT3:.*]] = torch.constant.int 3 // CHECK: %[[FLOAT4:.*]] = torch.constant.float 4.250000e+01 // CHECK: %[[TENSOR:.*]] = torch.tensor.literal(dense<1.000000e+00> : tensor<1xf32>) : !torch.tensor // CHECK: torch.initialize.global_slots [ // CHECK: @b(%[[TRUE]] : !torch.bool) // CHECK: @i(%[[INT3]] : !torch.int) // CHECK: @f(%[[FLOAT4]] : !torch.float) // CHECK: @t(%[[TENSOR]] : !torch.tensor) // CHECK: ] // CHECK: } // CHECK-LABEL: torch.global_slot @b : !torch.bool // CHECK-LABEL: torch.global_slot @i : !torch.int // CHECK-LABEL: torch.global_slot @f : !torch.float // CHECK-LABEL: torch.global_slot @t : !torch.tensor torch.class_type @c { torch.attr "b" : !torch.bool torch.attr "i" : !torch.int torch.attr "f" : !torch.float torch.attr "t" : !torch.tensor } %bool_true = torch.constant.bool true %i = torch.constant.int 3 %f = torch.constant.float 4.250000e+01 %t = torch.tensor.literal(dense<1.0> : tensor<1xf32>) : !torch.tensor torch.nn_module { torch.slot "b", %bool_true : !torch.bool torch.slot "i", %i : !torch.int torch.slot "f", %f : !torch.float torch.slot "t", %t : !torch.tensor } : !torch.nn.Module<"c"> func.func private @ensure_all_slots_are_used(%arg0: !torch.nn.Module<"c">) { %0 = torch.prim.GetAttr %arg0["b"] : !torch.nn.Module<"c"> -> !torch.bool %1 = torch.prim.GetAttr %arg0["i"] : !torch.nn.Module<"c"> -> !torch.int %2 = torch.prim.GetAttr %arg0["f"] : !torch.nn.Module<"c"> -> !torch.float %3 = torch.prim.GetAttr %arg0["t"] : !torch.nn.Module<"c"> -> !torch.tensor return }