import torch from torch_mlir_e2e_test.torchscript.framework import TestUtils from torch_mlir_e2e_test.torchscript.registry import register_test_case from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export # ============================================================================== class UniformModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float64, True), ([-1, -1, -1], torch.float64, True), ([-1, -1, -1], torch.float64, True), ]) def forward(self, x, y, z): a = torch.ops.aten.uniform_(x, 1.0, 10.0) b = torch.ops.aten.uniform_(y, -20.0, -5.0) c = torch.ops.aten.uniform_(z, -15.0, 3.0) std = torch.cat([ torch.flatten(torch.std(a)), torch.flatten(torch.std(b)), torch.flatten(torch.std(c)) ]) mean = torch.cat([ torch.flatten(torch.mean(a)), torch.flatten(torch.mean(b)), torch.flatten(torch.mean(c)) ]) return std, mean @register_test_case(module_factory=lambda: UniformModule()) def UniformModule_basic(module, tu: TestUtils): module.forward( tu.rand(256, 512, 8).double(), tu.rand(512, 1024, 4).double(), tu.rand(512, 256, 4).double()) # ============================================================================== class BernoulliModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, a): x = torch.bernoulli(a) mean = torch.mean(x) std = torch.std(x) return mean, std @register_test_case(module_factory=lambda: BernoulliModule()) def BernoulliModule_basic(module, tu: TestUtils): module.forward(tu.rand(256, 512, 64)) class BernoulliFloatModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float64, True), ([-1, -1, -1], torch.float64, True), ([-1, -1, -1], torch.float64, True), ]) def forward(self, a, b, c): x = torch.ops.aten.bernoulli_(a, 0.4) y = torch.ops.aten.bernoulli_(b, 0.7) z = torch.ops.aten.bernoulli_(c, 0.5) mean = torch.cat([ torch.flatten(torch.mean(x)), torch.flatten(torch.mean(y)), torch.flatten(torch.mean(z)) ]) std = torch.cat([ torch.flatten(torch.std(x)), torch.flatten(torch.std(y)), torch.flatten(torch.std(z)) ]) return mean, std @register_test_case(module_factory=lambda: BernoulliFloatModule()) def BernoulliFloatModule_basic(module, tu: TestUtils): module.forward( tu.rand(256, 512, 8).double(), tu.rand(512, 1024, 4).double(), tu.rand(512, 256, 4).double())