# -*- Python -*- # This file is licensed under a pytorch-style license # See frontends/pytorch/LICENSE for license information. from typing import Dict, Optional import torch import torch_mlir # RUN: %PYTHON %s | npcomp-opt | FileCheck %s mb = torch_mlir.ModuleBuilder() class TestModule(torch.nn.Module): def __init__(self): super().__init__() self.d = {"key1": torch.tensor(1)} # CHECK: torch.class_type @[[CLASSTYPE:.*]] { # CHECK: torch.attr "training" : !torch.bool # CHECK: torch.attr "_is_full_backward_hook" : !torch.optional # CHECK: torch.attr "d" : !torch.dict # CHECK: } # CHECK: %[[K:.*]] = torch.constant.str "key1" # CHECK: %[[TENSOR:.*]] = torch.tensor.literal(dense<1> : tensor) : !torch.tensor<[],si64> # CHECK: %[[DICT:.*]] = torch.prim.DictConstruct # CHECK-SAME keys(%[[K]] : !torch.str) values(%[[TENSOR]] : !torch.tensor<[],si64>) # CHECK-SAME: -> !torch.dict # CHECK: torch.nn_module { # CHECK: torch.slot "d", %[[DICT]] : !torch.dict # CHECK: } : !torch.nn.Module<"[[CLASSTYPE]]"> test_module = TestModule() recursivescriptmodule = torch.jit.script(test_module) # TODO: Automatically handle unpacking Python class RecursiveScriptModule into the underlying ScriptModule. mb.import_module(recursivescriptmodule._c) mb.module.operation.print()