//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // Also available under a BSD-style license. See LICENSE. // //===----------------------------------------------------------------------===// #include "torch-mlir/Conversion/TorchToStablehlo/TorchToStablehlo.h" #include "../PassDetail.h" #include "PopulatePatterns.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Complex/IR/Complex.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "stablehlo/dialect/ChloOps.h" #include "stablehlo/dialect/StablehloOps.h" #include "torch-mlir/Conversion/TorchToStablehlo/StablehloLegalizeUtils.h" #include "torch-mlir/Conversion/Utils/Utils.h" #include "torch-mlir/Dialect/Torch/IR/TorchOps.h" #include "torch-mlir/Dialect/Torch/IR/TorchTypes.h" #include "torch-mlir/Dialect/Torch/Utils/Utils.h" using namespace mlir; using namespace mlir::torch; using namespace mlir::torch::Torch; using namespace mlir::torch::torch_to_stablehlo; namespace { static Value createInitialValueForGatherScatterOp(Operation *op, RankedTensorType constType, PatternRewriter &rewriter) { if (!constType.hasStaticShape()) { return nullptr; } auto elementTy = constType.getElementType(); if (isa(op)) { if (isa(elementTy)) { auto constAttr = DenseElementsAttr::get( constType, {APFloat::getZero( cast(elementTy).getFloatSemantics(), /*negative=*/false)}); return rewriter.create(op->getLoc(), constType, constAttr); } else if (isa(elementTy) && elementTy.getIntOrFloatBitWidth() != 8) { auto constAttr = DenseElementsAttr::get( constType, {APInt::getZero(elementTy.getIntOrFloatBitWidth())}); return rewriter.create(op->getLoc(), constType, constAttr); } } op->emitError("unimplemented lowering in " "createInitialValueForGatherScatterOp"); return nullptr; } Value gatherTensorAlongSingleAxis(PatternRewriter &rewriter, Operation *op, Value input, Value indices, int64_t axis, size_t dimSizeIndexBits) { auto loc = op->getLoc(); Type intType = rewriter.getIntegerType(dimSizeIndexBits); Value one = rewriter.create( loc, rewriter.getIntegerAttr(intType, 1)); // sliceSizes auto inputRankTy = dyn_cast(input.getType()); auto inputRank = inputRankTy.getRank(); SmallVector sliceSizes; sliceSizes.reserve(inputRank); for (int64_t r = 0; r < inputRank; ++r) { if (r == axis) { sliceSizes.push_back(one); } else { sliceSizes.push_back(rewriter.create( loc, intType, rewriter.create(loc, input, r))); } } auto sliceSizesTensor = rewriter.create(loc, sliceSizes); // offsetDims SmallVector offsetDims; offsetDims.reserve(inputRank); for (int64_t r = 0; r < axis; ++r) { offsetDims.push_back(r); } auto indicesRankTy = dyn_cast(indices.getType()); auto indicesRank = indicesRankTy.getRank(); for (int64_t r = axis + 1; r < inputRank; ++r) { offsetDims.push_back(r + indicesRank - 1); } // collapsedSliceDims SmallVector collapsedSliceDims(1, axis); // startIndexMap SmallVector startIndexMap(1, axis); // indexVecDim int64_t indexVecDim = indicesRank; auto dimsAttr = stablehlo::GatherDimensionNumbersAttr::get( rewriter.getContext(), /*offsetDims=*/offsetDims, /*collapsedSliceDims=*/collapsedSliceDims, /*operandBatchingDims=*/{}, /*startIndicesBatchingDims=*/{}, /*startIndexMap=*/startIndexMap, /*indexVecDim=*/indexVecDim); // outputShape = input.shape[:axis] + indices.shape + // input.shape[axis + 1:] auto inputShape = inputRankTy.getShape(); auto indicesShape = indicesRankTy.getShape(); SmallVector outputShape(inputShape.begin(), inputShape.begin() + axis); outputShape.insert(outputShape.end(), indicesShape.begin(), indicesShape.end()); outputShape.insert(outputShape.end(), inputShape.begin() + axis + 1, inputShape.end()); // create output tensor type auto outputTy = RankedTensorType::get(outputShape, inputRankTy.getElementType()); return rewriter .create(loc, outputTy, input, indices, sliceSizesTensor, dimsAttr) .getResult(); } template LogicalResult prepareArgumentsForSlicingOp(OpTy op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, SmallVector &resultShape, SmallVector &offsets, SmallVector &strides) { Location loc = op.getLoc(); auto input = adaptor.getSelf(); RankedTensorType inputType = cast(input.getType()); Value zero = rewriter.create(loc, 0); Value one = rewriter.create(loc, 1); int64_t dim; if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) return op->emitError("unimplemented: dim is not constant"); int64_t inputRank = inputType.getRank(); dim = toPositiveDim(dim, inputRank); if (!isValidDim(dim, inputRank)) return rewriter.notifyMatchFailure(op, "dim is statically invalid"); SmallVector inputShape = getTensorSizes(rewriter, loc, input); Value dimSize = inputShape[dim]; Value torchTypeStart = op.getStart(); Value torchTypeEnd = op.getEnd(); Value builtinTypeStart = adaptor.getStart(); Value builtinTypeEnd = adaptor.getEnd(); if (isa(torchTypeStart.getType()) || isa(torchTypeEnd.getType())) return rewriter.notifyMatchFailure(op, "unimplemented optional type arg"); int64_t step; if (!matchPattern(op.getStep(), m_TorchConstantInt(&step))) { if (!isa(op.getStep().getType())) return op->emitError("unimplemented: step is not constant"); step = 1; } Value start = toPositiveValidDim(rewriter, loc, torchTypeStart, builtinTypeStart, zero, dimSize); Value end = toPositiveValidDim(rewriter, loc, torchTypeEnd, builtinTypeEnd, dimSize, dimSize); // end >= start ? end : start Value endSgeStart = rewriter.create( loc, arith::CmpIPredicate::sge, end, start); end = rewriter.create(loc, endSgeStart, end, start); Value stepIndex = rewriter.create(loc, step); // Slice logic: resultSize = floordiv(end - start + step - 1, step) resultShape = getTensorSizes(rewriter, loc, input); Value len = rewriter.create(loc, end, start); Value resultSize = rewriter.create(loc, len, stepIndex); resultSize = rewriter.create(loc, resultSize, one); resultSize = rewriter.create(loc, resultSize, stepIndex); resultShape[dim] = resultSize; strides.resize(inputType.getRank(), one); offsets.resize(inputType.getRank(), zero); offsets[dim] = start; strides[dim] = rewriter.create(loc, strides[dim], stepIndex); return success(); } } // namespace namespace { // A helper function used to generate stablehlo's ScatterIndices or // GatherIndices from torch's indices, usually appear in torch ops, like // aten.index.Tensor or aten.input_put A usage example is as follow: Input: [[1, // 2, 3], // [4, 5, 6], // [7, 8, 9]] // Indices[0]: [[0, 0, 0], // [2, 2, 0]] // Indices[1]: [[2], // [1]] // Step 1: broadcast indices tensors // Indices[0]: [[0, 0, 0], // [2, 2, 0]] // Indices[1]: [[2, 2, 2], // [1, 1, 1]] // Step 2: concat index tensors at a unsqueezed -1 dimension. // Indices: [[[0, 2], [0, 2], [0, 2]], // [[2, 1], [2, 1], [0, 1]]] FailureOr broadcastAndConcatIndices(Operation *op, ConversionPatternRewriter &rewriter, SmallVector indexTensors, llvm::ArrayRef inputShape, int &maxIndexRank) { // Step 1: broadcast indices tensors SmallVector indicesShape; SmallVector expandShape; SmallVector concatShape; // concat index tensor into to indices tensor for concat for (size_t i = 0; i < indexTensors.size(); i++) { auto indexTensor = indexTensors[i]; auto indexTensorType = cast(indexTensor.getType()); for (int64_t size : makeShapeTorchCompatible(indexTensorType.getShape())) { if (size == kUnknownSize) return failure(); } maxIndexRank = std::max(maxIndexRank, (int)indexTensorType.getRank()); } SmallVector refinedInputShape = makeShapeTorchCompatible(inputShape); for (int64_t size : refinedInputShape) { if (size == kUnknownSize) { return failure(); } } for (int i = 0; i < maxIndexRank; i++) { indicesShape.push_back(refinedInputShape[i]); expandShape.push_back(refinedInputShape[i]); concatShape.push_back(refinedInputShape[i]); } expandShape.push_back(1); concatShape.push_back(indexTensors.size()); SmallVector broadcastedIndices; Type indexElemTy = rewriter.getI64Type(); RankedTensorType bcastIndexType = RankedTensorType::get(indicesShape, indexElemTy); for (auto indexTensor : indexTensors) { Value bcastVal = hlo::promoteAndBroadcast(rewriter, indexTensor, bcastIndexType); RankedTensorType reshapeType = RankedTensorType::get(expandShape, indexElemTy); bcastVal = rewriter.create(op->getLoc(), reshapeType, bcastVal); broadcastedIndices.push_back(bcastVal); } // Step 2: concat index tensors at a unsqueezed -1 dimension. Value finalIndexTensor = broadcastedIndices[0]; if (broadcastedIndices.size() > 1) { RankedTensorType concatTy = RankedTensorType::get(concatShape, indexElemTy); finalIndexTensor = rewriter.create( op->getLoc(), concatTy, ValueRange(broadcastedIndices), concatShape.size() - 1); } return finalIndexTensor; } } // namespace // Ref: // https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding.html // padding_idx (int, optional) // – If specified, the entries at padding_idx do not contribute to the // gradient; therefore, the embedding vector at padding_idx is not updated // during training, i.e. it remains as a fixed “pad”. // scale_grad_by_freq (boolean, optional) // – If given, this will scale gradients by the inverse of frequency of the // words in the mini-batch. Default False. // sparse (bool, optional) // – If True, gradient w.r.t. weight matrix will be a sparse tensor. template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenEmbeddingOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { auto weight = adaptor.getWeight(); auto weightTy = cast(weight.getType()); if (!weightTy) return op.emitError("only ranked tensor types are supported"); int64_t padding_idx; if (!matchPattern(op.getPaddingIdx(), m_TorchConstantInt(&padding_idx))) return rewriter.notifyMatchFailure( op, "only constant padding_idx is currently supported"); bool scale_grad_by_freq; if (!matchPattern(op.getScaleGradByFreq(), m_TorchConstantBool(&scale_grad_by_freq))) return rewriter.notifyMatchFailure( op, "only constant scale_grad_by_freq is currently supported"); if (scale_grad_by_freq) return rewriter.notifyMatchFailure( op, "scale gradients is currently not supported"); bool sparse; if (!matchPattern(op.getSparse(), m_TorchConstantBool(&sparse))) return rewriter.notifyMatchFailure( op, "only constant sparse is currently supported"); if (sparse) return rewriter.notifyMatchFailure( op, "sparse gradients is currently not supported"); Value output = gatherTensorAlongSingleAxis( rewriter, op, weight, adaptor.getIndices(), 0, options.dimSizeIndexBits); rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(op.getType()), output); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenEmbeddingBagPaddingIdxOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { Location loc = op->getLoc(); Value weight = adaptor.getWeight(); Value indices = adaptor.getIndices(); Value offsets = adaptor.getOffsets(); auto weightTy = cast(weight.getType()); if (weightTy && weightTy.hasStaticShape() && weightTy.getRank() != 2) return rewriter.notifyMatchFailure( op, "weight must be rank 2 tensor with static shapes"); auto indicesTy = cast(indices.getType()); if (indicesTy && indicesTy.hasStaticShape() && indicesTy.getRank() != 1) return rewriter.notifyMatchFailure( op, "indices must be a vector with static shapes"); auto offsetsTy = cast(offsets.getType()); if (offsetsTy && offsetsTy.getRank() != 1 && offsetsTy.hasStaticShape() && offsetsTy.getShape()[0] == 1) return rewriter.notifyMatchFailure( op, "offsets must be a vector with static shape equal to 1"); if (!isa(op.getPaddingIdx().getType())) return rewriter.notifyMatchFailure( op, "Unimplemented: padding_idx should be none"); if (!isa(op.getPerSampleWeights().getType())) return rewriter.notifyMatchFailure( op, "Unimplemented: per_sample_weights should be none"); bool includeLastOffset; if (!matchPattern(op.getIncludeLastOffset(), m_TorchConstantBool(&includeLastOffset))) { return rewriter.notifyMatchFailure( op, "include_last_offset is expected to be a constant boolean value."); } if (includeLastOffset) return rewriter.notifyMatchFailure( op, "include_last_offset is currently not supported"); bool scaleGradByFreq; if (!matchPattern(op.getScaleGradByFreq(), m_TorchConstantBool(&scaleGradByFreq))) return rewriter.notifyMatchFailure( op, "only constant scale_grad_by_freq is currently supported"); if (scaleGradByFreq) return rewriter.notifyMatchFailure( op, "scale gradients is currently not supported"); bool sparse; if (!matchPattern(op.getSparse(), m_TorchConstantBool(&sparse))) return rewriter.notifyMatchFailure( op, "only constant sparse is currently supported"); if (sparse) return rewriter.notifyMatchFailure( op, "sparse gradients is currently not supported"); int64_t modeInt; if (!matchPattern(op.getMode(), m_TorchConstantInt(&modeInt))) { return rewriter.notifyMatchFailure( op, "mode is expected to be a constant integer value."); } if (modeInt != torch_upstream::EmbeddingBagMode::MODE_SUM) { return rewriter.notifyMatchFailure(op, "Unimplemented: Mean and Max mode are " "not supported yet for EmbeddingBag."); } const auto &options = ConvertAtenOp::getOptions(); auto weightDimSizes = *hlo::getDimSizesOfTensor(rewriter, op, weight, options.dimSizeIndexBits); auto indicesDimSizes = *hlo::getDimSizesOfTensor(rewriter, op, indices, options.dimSizeIndexBits); auto offsetsDimSizes = *hlo::getDimSizesOfTensor(rewriter, op, offsets, options.dimSizeIndexBits); Value gatherOutput = gatherTensorAlongSingleAxis( rewriter, op, weight, indices, 0, options.dimSizeIndexBits); Type elementTy = weightTy.getElementType(); auto constType = RankedTensorType::get({}, elementTy); Value initValue = createInitialValueForGatherScatterOp(op, constType, rewriter); if (!initValue) return failure(); auto stablehloReduceOp = rewriter.create( op.getLoc(), gatherOutput, initValue, rewriter.getDenseI64ArrayAttr({0}), elementTy); Region ®ion = stablehloReduceOp.getBody(); Block &block = region.emplaceBlock(); auto blockArgumentTy = RankedTensorType::get({}, elementTy); block.addArgument(blockArgumentTy, op->getLoc()); block.addArgument(blockArgumentTy, op->getLoc()); auto *firstArgument = block.args_begin(); auto secondArgument = block.args_rbegin(); { OpBuilder::InsertionGuard guard(rewriter); rewriter.setInsertionPointToStart(&block); Value addResult = rewriter.create( op->getLoc(), blockArgumentTy, *firstArgument, *secondArgument); rewriter.create(op->getLoc(), addResult); } auto outShapeInfo = hlo::getDimSizesOfTensor(rewriter, op, weight, options.dimSizeIndexBits); if (failed(outShapeInfo)) { return rewriter.notifyMatchFailure( op, "failed to get dimension sizes of the input"); } auto outShapeVec = *outShapeInfo; auto one = rewriter.create( op->getLoc(), rewriter.getIntegerAttr( rewriter.getIntegerType(options.dimSizeIndexBits), 1)); outShapeVec[0] = one; auto outShapeTensor = rewriter.create(op->getLoc(), outShapeVec); auto resultA = rewriter.create( loc, getTypeConverter()->convertType(op.getType(0)), stablehloReduceOp.getResult(0), outShapeTensor); RankedTensorType resultType = cast( getTypeConverter()->convertType(op->getResult(1).getType())); Value resultB = createInitialValueForGatherScatterOp(op, resultType, rewriter); if (!resultB) return failure(); resultType = cast( getTypeConverter()->convertType(op->getResult(2).getType())); Value resultC = createInitialValueForGatherScatterOp(op, resultType, rewriter); if (!resultC) return failure(); resultType = cast( getTypeConverter()->convertType(op->getResult(3).getType())); Value resultD = createInitialValueForGatherScatterOp(op, resultType, rewriter); if (!resultD) return failure(); rewriter.replaceOp(op, {resultA, resultB, resultC, resultD}); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenIndexSelectOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { auto self = adaptor.getSelf(); auto selfTy = cast(self.getType()); if (!selfTy) return op.emitError("only ranked tensor types are supported"); int64_t dim; if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) return rewriter.notifyMatchFailure( op, "only constant dim is currently supported"); int64_t inputRank = selfTy.getRank(); dim = toPositiveDim(dim, inputRank); if (!isValidDim(dim, inputRank)) return rewriter.notifyMatchFailure(op, "dim is statically invalid"); Value output = gatherTensorAlongSingleAxis( rewriter, op, self, adaptor.getIndex(), dim, options.dimSizeIndexBits); rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(op.getType()), output); return success(); } // AtenGatherOp template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenGatherOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { Location loc = op->getLoc(); Value input = adaptor.getSelf(); Value index = adaptor.getIndex(); auto inputType = cast(input.getType()); auto indexType = cast(index.getType()); auto indexElemType = indexType.getElementType(); if (indexType.getRank() != inputType.getRank()) { return op.emitError("`index` and `input` param should have the same rank"); } int64_t dim; if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) { return rewriter.notifyMatchFailure( op, "only constant int `dim` param supported"); } dim = toPositiveDim(dim, inputType.getRank()); if (!isValidDim(dim, inputType.getRank())) { return rewriter.notifyMatchFailure(op, "invalid `dim` param detected"); } bool sparseGrad = false; if (!matchPattern(op.getSparseGrad(), m_TorchConstantBool(&sparseGrad))) { return rewriter.notifyMatchFailure( op, "only constant boolean `sparse_grad` param supported"); } auto options = getOptions(); auto indexShapeInfo = hlo::getDimSizesOfTensor(rewriter, op, index, options.dimSizeIndexBits); if (failed(indexShapeInfo)) { return rewriter.notifyMatchFailure( op, "failed to get dim sizes of `index` param"); } auto intType = rewriter.getIntegerType(options.dimSizeIndexBits); auto one = rewriter.create( loc, rewriter.getIntegerAttr(intType, 1)); auto toConcatIndexShapeValueVec = *indexShapeInfo; toConcatIndexShapeValueVec.push_back(one); auto toConcatIndexShape = rewriter.create(loc, toConcatIndexShapeValueVec); auto indexShape = indexType.getShape(); SmallVector toConcatIndexShapeVec(indexShape.begin(), indexShape.end()); toConcatIndexShapeVec.push_back(1); RankedTensorType toConcatIndexType = RankedTensorType::get(toConcatIndexShapeVec, indexElemType); SmallVector toConcat; for (int64_t i = 0; i < inputType.getRank(); ++i) { if (i == dim) { toConcat.push_back(rewriter.create( loc, toConcatIndexType, index, toConcatIndexShape)); } else { toConcat.push_back(rewriter.create( loc, toConcatIndexType, toConcatIndexShape, rewriter.getI64IntegerAttr(i))); } } auto gatherIndicies = rewriter.create( loc, toConcat, static_cast(inputType.getRank())); SmallVector sliceSizes(inputType.getRank(), 1); int64_t indexVecDim = inputType.getRank(); SmallVector collapsedDims; SmallVector startIndexMap; for (int64_t i = 0; i < inputType.getRank(); ++i) { collapsedDims.push_back(i); startIndexMap.push_back(i); } auto dimsAttr = stablehlo::GatherDimensionNumbersAttr::get( rewriter.getContext(), /*offsetDims=*/{}, /*collapsedSliceDims=*/collapsedDims, /*operandBatchingDims=*/{}, /*startIndicesBatchingDims=*/{}, /*startIndexMap=*/startIndexMap, /*indexVecDim=*/indexVecDim); rewriter.replaceOpWithNewOp( op, input, gatherIndicies, dimsAttr, rewriter.getDenseI64ArrayAttr(sliceSizes)); return success(); } // AtenSliceScatterOp template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenSliceScatterOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); Location loc = op.getLoc(); const TypeConverter *typeConverter = getTypeConverter(); auto input = adaptor.getSelf(); RankedTensorType resultType = cast( typeConverter->convertType(op->getResult(0).getType())); SmallVector resultShape; SmallVector offsets; SmallVector strides; if (failed(prepareArgumentsForSlicingOp( op, adaptor, rewriter, resultShape, offsets, strides))) { return failure(); } Value src = adaptor.getSrc(); auto srcType = cast(src.getType()); int64_t srcRank = srcType.getRank(); SmallVector srcAbstractSizes(srcRank, kUnknownSize); auto abstractSrcType = RankedTensorType::get( makeShapeLLVMCompatible(srcAbstractSizes), srcType.getElementType()); Value abstractSrc = rewriter.create(loc, abstractSrcType, src); Value result = rewriter.create( loc, abstractSrc, input, offsets, resultShape, strides); rewriter.replaceOpWithNewOp(op, resultType, result); return success(); } template class ConvertAtenScatterOp : public ConvertAtenOp { public: using ConvertAtenOp::ConvertAtenOp; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Location loc = op->getLoc(); Value input = adaptor.getSelf(); Value index = adaptor.getIndex(); Value src = adaptor.getSrc(); auto inputType = cast(input.getType()); auto indexType = cast(index.getType()); auto srcType = cast(src.getType()); auto indexElemType = indexType.getElementType(); if (indexType.getRank() != inputType.getRank() || inputType.getRank() != srcType.getRank()) { return op.emitError( "`index`, `input` and `src` param should have the same rank"); } int64_t dim; if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) { return rewriter.notifyMatchFailure( op, "only constant int `dim` param supported"); } dim = toPositiveDim(dim, inputType.getRank()); if (!isValidDim(dim, inputType.getRank())) { return rewriter.notifyMatchFailure(op, "invalid `dim` param detected"); } auto options = this->getOptions(); auto indexShapeInfo = hlo::getDimSizesOfTensor(rewriter, op, index, options.dimSizeIndexBits); if (failed(indexShapeInfo)) { return rewriter.notifyMatchFailure( op, "failed to get dim sizes of `index` param"); } auto intType = rewriter.getIntegerType(options.dimSizeIndexBits); // slice src tensor to have the same shape bound of index tensor in the // leading dimensions. PyTorch has guaranteed that src tensor size will not // be smaller than that of index tensor. REF: // https://pytorch.org/docs/stable/generated/torch.Tensor.scatter_.html#torch.Tensor.scatter_ auto zero = rewriter.create( loc, rewriter.getIntegerAttr(intType, 0)); auto one = rewriter.create( loc, rewriter.getIntegerAttr(intType, 1)); SmallVector sliceIndicies(srcType.getRank(), zero); SmallVector sliceStrides(srcType.getRank(), one); auto sliceIndiciesValue = rewriter.create(loc, sliceIndicies); auto sliceStridesValue = rewriter.create(loc, sliceStrides); auto sliceLimitIndiciesValue = rewriter.create(loc, *indexShapeInfo); auto newSrcType = RankedTensorType::get(indexType.getShape(), srcType.getElementType()); src = rewriter.create( loc, newSrcType, src, sliceIndiciesValue, sliceLimitIndiciesValue, sliceStridesValue); // generate scatter indicies for stablehlo::Scatter op. auto toConcatIndexShapeValueVec = *indexShapeInfo; toConcatIndexShapeValueVec.push_back(one); auto toConcatIndexShape = rewriter.create( loc, toConcatIndexShapeValueVec); auto indexShape = indexType.getShape(); SmallVector toConcatIndexShapeVec(indexShape.begin(), indexShape.end()); toConcatIndexShapeVec.push_back(1); RankedTensorType toConcatIndexType = RankedTensorType::get(toConcatIndexShapeVec, indexElemType); SmallVector toConcat; for (int64_t i = 0; i < inputType.getRank(); ++i) { if (i == dim) { toConcat.push_back(rewriter.create( loc, toConcatIndexType, index, toConcatIndexShape)); } else { toConcat.push_back(rewriter.create( loc, toConcatIndexType, toConcatIndexShape, rewriter.getI64IntegerAttr(i))); } } auto scatterIndicies = rewriter.create( loc, toConcat, static_cast(inputType.getRank())); SmallVector sliceSizes(inputType.getRank(), 1); // generate ScatterDimensionNumbers for stablehlo::Scatter op. int64_t indexVecDim = inputType.getRank(); SmallVector scatterDimOperandDimMap; SmallVector insertedWindowDims; for (int64_t i = 0; i < inputType.getRank(); ++i) { scatterDimOperandDimMap.push_back(i); insertedWindowDims.push_back(i); } auto scatterDimensionNumbers = stablehlo::ScatterDimensionNumbersAttr::get( rewriter.getContext(), /*updateWindowDims=*/{}, /*insertedWindowDims=*/insertedWindowDims, /*inputBatchingDims=*/{}, /*scatterIndicesBatchingDims=*/{}, /*scatterDimsToOperandDim=*/scatterDimOperandDimMap, /*indexVectorDim=*/indexVecDim); auto stablehloScatterOp = rewriter.create( loc, inputType, input, scatterIndicies, src, scatterDimensionNumbers, false, false); // config update computation function: just return the element from src. Block &block = stablehloScatterOp.getUpdateComputation().emplaceBlock(); // add block arguments auto blockArgumentType = RankedTensorType::get({}, inputType.getElementType()); block.addArgument(blockArgumentType, loc); block.addArgument(blockArgumentType, loc); auto *lhsArg = block.args_begin(); auto *rhsArg = std::next(lhsArg); { OpBuilder::InsertionGuard guard(rewriter); rewriter.setInsertionPointToStart(&block); if (reduceType == 0) { rewriter.create(loc, *rhsArg); } else if (reduceType == 1) { Value res = rewriter.create(loc, blockArgumentType, *lhsArg, *rhsArg); rewriter.create(loc, res); } } rewriter.replaceOp(op, stablehloScatterOp.getResults()); return success(); } }; // AtenIndexTensorOp // Convert to StableHlo::GatherOp. template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenIndexTensorHackedTwinOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { Location loc = op->getLoc(); Value input = adaptor.getSelf(); auto inputTensorType = cast(input.getType()); auto outType = cast(getTypeConverter()->convertType(op.getType())); auto outShape = outType.getShape(); Value indexList = op.getIndices(); SmallVector indicesTorchType; if (!getListConstructElements(indexList, indicesTorchType)) return op.emitError( "unimplemented: the tensor list is not from list construct"); auto indexTensors = getTypeConvertedValues(rewriter, loc, getTypeConverter(), indicesTorchType); int maxIndexRank = -1; auto gatherIndicesInfo = broadcastAndConcatIndices(op, rewriter, indexTensors, outShape, maxIndexRank); if (failed(gatherIndicesInfo)) { return rewriter.notifyMatchFailure( op, "failed to generate broadcasted indices"); } auto gatherIndices = *gatherIndicesInfo; int64_t numIndicesDim = indexTensors.size(); int64_t indexVecDim = maxIndexRank; SmallVector offsetDims; SmallVector collapsedDims; SmallVector startIndexMap; for (int64_t i = 0; i < numIndicesDim; ++i) { collapsedDims.push_back(i); startIndexMap.push_back(i); } for (int64_t i = numIndicesDim; i < inputTensorType.getRank(); i++) { offsetDims.push_back(i + maxIndexRank - numIndicesDim); } auto dimsAttr = stablehlo::GatherDimensionNumbersAttr::get( rewriter.getContext(), /*offsetDims=*/offsetDims, /*collapsedSliceDims=*/collapsedDims, /*operandBatchingDims=*/{}, /*startIndicesBatchingDims=*/{}, /*startIndexMap=*/startIndexMap, /*indexVecDim=*/indexVecDim); SmallVector sliceSizes; auto inputShape = makeShapeTorchCompatible(inputTensorType.getShape()); for (int64_t i = 0; i < inputTensorType.getRank(); ++i) { if (i < numIndicesDim) { sliceSizes.push_back(1); } else { sliceSizes.push_back(inputShape[i]); } } rewriter.replaceOpWithNewOp( op, outType, input, gatherIndices, dimsAttr, rewriter.getDenseI64ArrayAttr(sliceSizes)); return success(); } // AtenIndexPutHackedTwinOP // Convert to stablehlo::ScatterOp template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenIndexPutHackedTwinOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { Location loc = op->getLoc(); Value input = adaptor.getSelf(); Value values = adaptor.getValues(); auto outType = cast(getTypeConverter()->convertType(op.getType())); auto inputType = cast(input.getType()); int64_t inputRank = inputType.getRank(); auto valuesType = cast(values.getType()); auto valuesShape = valuesType.getShape(); bool accumulate; if (!matchPattern(op.getAccumulate(), m_TorchConstantBool(&accumulate))) { return rewriter.notifyMatchFailure(op, "accumulate should be a constant bool"); } Value indexList = op.getIndices(); SmallVector indicesTorchType; if (!getListConstructElements(indexList, indicesTorchType)) return op.emitError( "unimplemented: the tensor list is not from list construct"); auto indexTensors = getTypeConvertedValues(rewriter, loc, getTypeConverter(), indicesTorchType); int maxIndexRank = -1; auto scatterIndicesInfo = broadcastAndConcatIndices( op, rewriter, indexTensors, valuesShape, maxIndexRank); if (failed(scatterIndicesInfo)) { return rewriter.notifyMatchFailure( op, "failed to generate broadcasted indices"); } auto scatterIndices = *scatterIndicesInfo; // create stablehlo::ScatterOp int64_t indexVecDim = maxIndexRank; SmallVector scatterDimOperandDimMap; SmallVector insertedWindowDims; SmallVector updateWindowDims; for (int64_t i = 0; i < maxIndexRank; ++i) { scatterDimOperandDimMap.push_back(i); insertedWindowDims.push_back(i); } for (int64_t i = maxIndexRank; i < inputRank; ++i) { updateWindowDims.push_back(i); } auto scatterDimensionNumbers = stablehlo::ScatterDimensionNumbersAttr::get( rewriter.getContext(), /*updateWindowDims=*/updateWindowDims, /*insertedWindowDims=*/insertedWindowDims, /*inputBatchingDims=*/{}, /*scatterIndicesBatchingDims=*/{}, /*scatterDimsToOperandDim=*/scatterDimOperandDimMap, /*indexVectorDim=*/indexVecDim); auto stablehloScatterOp = rewriter.create( loc, outType, input, scatterIndices, values, scatterDimensionNumbers, false, false); // configure update computation function. Block &block = stablehloScatterOp.getUpdateComputation().emplaceBlock(); // add block arguments auto blockArgumentType = RankedTensorType::get({}, inputType.getElementType()); block.addArgument(blockArgumentType, loc); block.addArgument(blockArgumentType, loc); auto *lhsArg = block.args_begin(); auto *rhsArg = std::next(lhsArg); { OpBuilder::InsertionGuard guard(rewriter); rewriter.setInsertionPointToStart(&block); if (!accumulate) { rewriter.create(loc, *rhsArg); } else { Value out = rewriter.create(loc, blockArgumentType, *lhsArg, *rhsArg); rewriter.create(loc, out); } } rewriter.replaceOp(op, stablehloScatterOp.getResults()); return success(); } // AtenGridSamplerOp // See // https://github.com/pytorch/pytorch/blob/ec58f1f74ebcec744d2ab90ad34abd09c1018e92/torch/_decomp/decompositions.py#L3923-L4086 namespace { template static Value getConstantLike(OpBuilder &b, Location loc, T constant, Value val) { Type ty = getElementTypeOrSelf(val.getType()); auto getAttr = [&]() -> Attribute { if (isa(ty)) return b.getIntegerAttr(ty, constant); if (isa(ty)) return b.getFloatAttr(ty, constant); if (auto complexTy = dyn_cast(ty)) return complex::NumberAttr::get(complexTy, constant, 0); llvm_unreachable("unhandled element type"); }; return b.create(loc, cast(getAttr()), val); } template static Value getConstTensor(ConversionPatternRewriter &rewriter, Operation *op, ArrayRef values, ArrayRef shape, Type ty) { Location loc = op->getLoc(); RankedTensorType valueType = RankedTensorType::get(shape, ty); auto valueAttr = DenseElementsAttr::get(valueType, values); return rewriter.create(loc, valueType, valueAttr); } template static Value getConstScalarTensor(ConversionPatternRewriter &rewriter, Operation *op, T value, Type ty) { return getConstTensor(rewriter, op, ArrayRef{value}, {}, ty); } // Helper function to lower AtenGridSamplerOp. static Value unnormalize(ConversionPatternRewriter &rewriter, Operation *op, Value coords, int64_t size, Type elemTy, bool alignCorners) { Location loc = op->getLoc(); APFloat pointFive(cast(elemTy).getFloatSemantics(), "0.5"); APFloat sizeFloat = APFloat(cast(elemTy).getFloatSemantics(), size); APFloat one = APFloat(cast(elemTy).getFloatSemantics(), 1); APFloat zero = APFloat(cast(elemTy).getFloatSemantics(), 0); // double mul = alignCorners ? (size * 0.5 - 0.5) : (size * 0.5); // double ofs = size * 0.5 - 0.5; APFloat mul = alignCorners ? sizeFloat * pointFive - pointFive : sizeFloat * pointFive; APFloat ofs = sizeFloat * pointFive - pointFive; Value constMul = getConstScalarTensor(rewriter, op, mul, elemTy); Value constOfs = getConstScalarTensor(rewriter, op, ofs, elemTy); // use chlo::BroadcastMulOp to multiply constMul with coords. DenseI64ArrayAttr bcastDimensions; Value mulResult = rewriter.create(loc, coords, constMul, bcastDimensions); // use chlo::BroadcastAddOp to add constOfs to mulResult. Value result = rewriter.create(loc, mulResult, constOfs, bcastDimensions); return result; } static Value computeCoordinates(ConversionPatternRewriter &rewriter, Operation *op, Value coords, int64_t size, Type elemTy, int64_t padding_mode) { // TODO: add support for padding_mode 1 and 2. return coords; } static Value computeSourceIndex(ConversionPatternRewriter &rewriter, Operation *op, Value coords, int64_t size, Type elemTy, int64_t padding_mode, bool alignCorners) { Value coordsUn = unnormalize(rewriter, op, coords, size, elemTy, alignCorners); return computeCoordinates(rewriter, op, coordsUn, size, elemTy, padding_mode); } // def in_bounds_cond(xs: Tensor, ys: Tensor) -> Tensor: // return torch.logical_and( // 0 <= xs, torch.logical_and(xs < iW, torch.logical_and(0 <= ys, ys // < iH)) // ) static Value inBoundsCond(ConversionPatternRewriter &rewriter, Operation *op, Value xs, Value ys, int64_t ih, int64_t iw, Type elemTy) { Location loc = op->getLoc(); APFloat zeroFloat = APFloat(cast(elemTy).getFloatSemantics(), 0); Value zero = getConstScalarTensor(rewriter, op, zeroFloat, elemTy); APFloat iwFloat = APFloat(cast(elemTy).getFloatSemantics(), iw); APFloat ihFloat = APFloat(cast(elemTy).getFloatSemantics(), ih); Value iwFloatValue = getConstScalarTensor(rewriter, op, iwFloat, elemTy); Value ihFloatValue = getConstScalarTensor(rewriter, op, ihFloat, elemTy); chlo::ComparisonTypeAttr compareTypeAttr = chlo::ComparisonTypeAttr::get( rewriter.getContext(), chlo::ComparisonType::FLOAT); chlo::ComparisonDirectionAttr compareLTAttr = chlo::ComparisonDirectionAttr::get(rewriter.getContext(), chlo::ComparisonDirection::LT); chlo::ComparisonDirectionAttr compareGEAttr = chlo::ComparisonDirectionAttr::get(rewriter.getContext(), chlo::ComparisonDirection::GE); DenseI64ArrayAttr bcastDimensions; Value cond1 = rewriter.create( loc, xs, zero, bcastDimensions, compareGEAttr, compareTypeAttr); Value cond2 = rewriter.create( loc, xs, iwFloatValue, bcastDimensions, compareLTAttr, compareTypeAttr); Value cond3 = rewriter.create( loc, ys, zero, bcastDimensions, compareGEAttr, compareTypeAttr); Value cond4 = rewriter.create( loc, ys, ihFloatValue, bcastDimensions, compareLTAttr, compareTypeAttr); Value cond5 = rewriter.create(loc, cond1, cond2, bcastDimensions); Value cond6 = rewriter.create(loc, cond3, cond4, bcastDimensions); return rewriter.create(loc, cond5, cond6, bcastDimensions); } // def clip(xs: Tensor, ys: Tensor, ws: Tensor) -> TensorSequenceType: // cond = in_bounds_cond(xs, ys) // # To clip to inside valid coordinates, we map the coordinates // # to (x, y) = (0, 0) and also set the weight to 0 // # We also change the shape of the tensor to the appropriate one for // # broadcasting with N_idx, C_idx for the purposes of advanced // indexing c = C if _expand_grid else 1 // return tuple( // torch.where(cond, t, 0).view(N, c, oH, oW) // for t in (xs.to(dtype=torch.int64), ys.to(dtype=torch.int64), ws) // ) SmallVector clip(ConversionPatternRewriter &rewriter, Operation *op, Value xs, Value ys, Value ws, int64_t N, int64_t oH, int64_t oW, int64_t iH, int64_t iW, Type elemTy) { Location loc = op->getLoc(); auto indexElemTy = rewriter.getI64Type(); auto indexTy = RankedTensorType::get(mlir::ArrayRef{1}, indexElemTy); Value zeroIntValue = rewriter.create( loc, indexTy, DenseIntElementsAttr::get(indexTy, ArrayRef{0})); APFloat zeroAPFloat = APFloat(cast(elemTy).getFloatSemantics(), 0); Value zeroFloatValue = getConstScalarTensor(rewriter, op, zeroAPFloat, elemTy); Value cond = inBoundsCond(rewriter, op, xs, ys, iH, iW, elemTy); Value xsInt = rewriter.create(loc, xs, indexElemTy); Value ysInt = rewriter.create(loc, ys, indexElemTy); Value selectXs = rewriter.create( loc, ArrayRef{cond, xsInt, zeroIntValue}); Value selectYs = rewriter.create( loc, ArrayRef{cond, ysInt, zeroIntValue}); Value selectWs = rewriter.create( loc, ArrayRef{cond, ws, zeroFloatValue}); SmallVector sizes = {N, 1, oH, oW}; Value reshapedXs = rewriter.create( loc, RankedTensorType::get(sizes, indexElemTy), selectXs); Value reshapedYs = rewriter.create( loc, RankedTensorType::get(sizes, indexElemTy), selectYs); Value reshapedWs = rewriter.create( loc, RankedTensorType::get(sizes, elemTy), selectWs); return SmallVector{reshapedXs, reshapedYs, reshapedWs}; } Value getSummand(ConversionPatternRewriter &rewriter, Operation *op, Value input, Value ix, Value iy, Value w, int64_t N, int64_t oH, int64_t oW, int64_t iH, int64_t iW, Value Nidx, Value CIdx, RankedTensorType outType, Type elemTy) { Location loc = op->getLoc(); auto inputTensorType = cast(input.getType()); SmallVector clipValues = clip(rewriter, op, ix, iy, w, N, oH, oW, iH, iW, elemTy); Value idxX = clipValues[0]; Value idxY = clipValues[1]; Value idxW = clipValues[2]; SmallVector indexTensors{Nidx, CIdx, idxY, idxX}; int maxIndexRank = -1; auto gatherIndicesInfo = broadcastAndConcatIndices(input.getDefiningOp(), rewriter, indexTensors, outType.getShape(), maxIndexRank); auto gatherIndices = *gatherIndicesInfo; int64_t numIndicesDim = indexTensors.size(); int64_t indexVecDim = maxIndexRank; SmallVector offsetDims; SmallVector collapsedDims; SmallVector startIndexMap; for (int64_t i = 0; i < numIndicesDim; ++i) { collapsedDims.push_back(i); startIndexMap.push_back(i); } for (int64_t i = numIndicesDim; i < inputTensorType.getRank(); i++) { offsetDims.push_back(i + maxIndexRank - numIndicesDim); } auto dimsAttr = stablehlo::GatherDimensionNumbersAttr::get( rewriter.getContext(), /*offsetDims=*/offsetDims, /*collapsedSliceDims=*/collapsedDims, /*operandBatchingDims=*/{}, /*startIndicesBatchingDims=*/{}, /*startIndexMap=*/startIndexMap, /*indexVecDim=*/indexVecDim); SmallVector sliceSizes; auto inputShape = makeShapeTorchCompatible(inputTensorType.getShape()); for (int64_t i = 0; i < inputTensorType.getRank(); ++i) { if (i < numIndicesDim) { sliceSizes.push_back(1); } else { sliceSizes.push_back(inputShape[i]); } } Value gather = rewriter.create( loc, input, gatherIndices, dimsAttr, rewriter.getDenseI64ArrayAttr(sliceSizes)); // use chlo::BroadcastMulOp to multiply idxW with gather. DenseI64ArrayAttr bcastDimensions; return rewriter.create(loc, gather, idxW, bcastDimensions); } } // namespace template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenGridSamplerOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { Location loc = op->getLoc(); Value input = adaptor.getInput(); Value grid = adaptor.getGrid(); int64_t interpolationMode; if (!matchPattern(op.getInterpolationMode(), m_TorchConstantInt(&interpolationMode))) return rewriter.notifyMatchFailure( op, "interpolation_mode must be an integer constant"); int64_t paddingMode; if (!matchPattern(op.getPaddingMode(), m_TorchConstantInt(&paddingMode))) return rewriter.notifyMatchFailure( op, "padding_mode must be an integer constant"); if (interpolationMode != 0 && interpolationMode != 1) return rewriter.notifyMatchFailure( op, "only support interpolation_mode = 0 (bilinear) or 1(nearest)"); if (paddingMode != 0) return rewriter.notifyMatchFailure(op, "only support paddingMode = 0 (Zero)"); bool alignCorners = false; if (!matchPattern(op.getAlignCorners(), m_TorchConstantBool(&alignCorners))) return rewriter.notifyMatchFailure( op, "alignCorners must be a boolean constant"); RankedTensorType inputTy = cast(input.getType()); RankedTensorType gridTy = cast(grid.getType()); RankedTensorType outTy = cast(getTypeConverter()->convertType(op.getType())); Type elemTy = inputTy.getElementType(); if (inputTy.getRank() != 4) return rewriter.notifyMatchFailure(op, "input must be a 4D tensor"); if (gridTy.getRank() != 4) return rewriter.notifyMatchFailure(op, "grid must be a 4D tensor"); auto inputSize = inputTy.getShape(); auto gridSize = gridTy.getShape(); int64_t N = inputSize[0]; int64_t C = inputSize[1]; int64_t iH = inputSize[2]; int64_t iW = inputSize[3]; int64_t oH = gridSize[1]; int64_t oW = gridSize[2]; // grid is a 4D tensor with shape (N, oH, oW, 2) Type indexElemTy = rewriter.getI64Type(); RankedTensorType indexTy = RankedTensorType::get(mlir::ArrayRef{1}, indexElemTy); Value constN = rewriter.create( loc, indexTy, DenseIntElementsAttr::get(indexTy, {N})); Value constC = rewriter.create( loc, indexTy, DenseIntElementsAttr::get(indexTy, {C})); APFloat one = APFloat(cast(elemTy).getFloatSemantics(), 1); APFloat zero = APFloat(cast(elemTy).getFloatSemantics(), 0); Value constOneFloat = getConstScalarTensor(rewriter, op, one, elemTy); auto NidxFlatten = rewriter.create( loc, RankedTensorType::get(mlir::ArrayRef{N}, indexElemTy), constN, 0); auto CidxFlatten = rewriter.create( loc, RankedTensorType::get(mlir::ArrayRef{C}, indexElemTy), constC, 0); // Reshape NidxFlatten to 4D tensor (N, 1, 1, 1) auto NidxSizes = mlir::SmallVector{N, 1, 1, 1}; auto Nidx = rewriter.create( loc, RankedTensorType::get(NidxSizes, indexElemTy), NidxFlatten); // Reshape CidxFlatten to 4D tensor (1, C, 1, 1) auto CidxSizes = mlir::SmallVector{1, C, 1, 1}; auto Cidx = rewriter.create( loc, RankedTensorType::get(CidxSizes, indexElemTy), CidxFlatten); llvm::SmallVector stride(4, 1); auto gridX = rewriter.create( loc, RankedTensorType::get(mlir::SmallVector{N, oH, oW, 1}, gridTy.getElementType()), grid, mlir::SmallVector{0, 0, 0, 0}, mlir::SmallVector{N, oH, oW, 1}, stride); auto gridY = rewriter.create( loc, RankedTensorType::get(mlir::SmallVector{N, oH, oW, 1}, gridTy.getElementType()), grid, mlir::SmallVector{0, 0, 0, 1}, mlir::SmallVector{N, oH, oW, 2}, stride); // squeeze last dimension auto gridXshape = mlir::SmallVector{N, oH, oW}; auto gridXReshape = rewriter.create( loc, RankedTensorType::get(gridXshape, gridTy.getElementType()), gridX); auto gridYReshape = rewriter.create( loc, RankedTensorType::get(gridXshape, gridTy.getElementType()), gridY); if (interpolationMode == 0) { Value ix = computeSourceIndex(rewriter, op, gridXReshape, iW, elemTy, paddingMode, alignCorners); Value iy = computeSourceIndex(rewriter, op, gridYReshape, iH, elemTy, paddingMode, alignCorners); Value ix_nw = rewriter.create(loc, ix); Value iy_nw = rewriter.create(loc, iy); DenseI64ArrayAttr bcastDimensions; Value ix_ne = rewriter.create( loc, ix_nw, constOneFloat, bcastDimensions); Value iy_ne = iy_nw; Value ix_sw = ix_nw; Value iy_sw = rewriter.create( loc, iy_nw, constOneFloat, bcastDimensions); Value ix_se = ix_ne; Value iy_se = iy_sw; // w_nw = (ix_se - ix) * (iy_se - iy) // w_ne = (ix - ix_sw) * (iy_sw - iy) // w_sw = (ix_ne - ix) * (iy - iy_ne) // w_se = (ix - ix_nw) * (iy - iy_nw) Value w_nw = rewriter.create( loc, rewriter.create(loc, ix_se, ix, bcastDimensions), rewriter.create(loc, iy_se, iy, bcastDimensions), bcastDimensions); Value w_ne = rewriter.create( loc, rewriter.create(loc, ix, ix_sw, bcastDimensions), rewriter.create(loc, iy_sw, iy, bcastDimensions), bcastDimensions); Value w_sw = rewriter.create( loc, rewriter.create(loc, ix_ne, ix, bcastDimensions), rewriter.create(loc, iy, iy_ne, bcastDimensions), bcastDimensions); Value w_se = rewriter.create( loc, rewriter.create(loc, ix, ix_nw, bcastDimensions), rewriter.create(loc, iy, iy_nw, bcastDimensions), bcastDimensions); Value summand_nw = getSummand(rewriter, op, input, ix_nw, iy_nw, w_nw, N, oH, oW, iH, iW, Nidx, Cidx, outTy, elemTy); Value summand_ne = getSummand(rewriter, op, input, ix_ne, iy_ne, w_ne, N, oH, oW, iH, iW, Nidx, Cidx, outTy, elemTy); Value summand_sw = getSummand(rewriter, op, input, ix_sw, iy_sw, w_sw, N, oH, oW, iH, iW, Nidx, Cidx, outTy, elemTy); Value summand_se = getSummand(rewriter, op, input, ix_se, iy_se, w_se, N, oH, oW, iH, iW, Nidx, Cidx, outTy, elemTy); // summand_nw + summand_ne + summand_sw + summand_se Value sum = rewriter.create(loc, summand_nw, summand_ne); sum = rewriter.create(loc, sum, summand_sw); sum = rewriter.create(loc, sum, summand_se); rewriter.replaceOp(op, sum); } else if (interpolationMode == 1) { Value ix = computeSourceIndex(rewriter, op, gridXReshape, iW, elemTy, paddingMode, alignCorners); Value iy = computeSourceIndex(rewriter, op, gridYReshape, iH, elemTy, paddingMode, alignCorners); Value ix_round = rewriter.create(loc, ix); Value iy_round = rewriter.create(loc, iy); Value oneTensor = getConstantLike(rewriter, loc, 1.0, ix_round); Value summand = getSummand(rewriter, op, input, ix_round, iy_round, oneTensor, N, oH, oW, iH, iW, Nidx, Cidx, outTy, elemTy); rewriter.replaceOp(op, summand); } return success(); } void mlir::torch::torch_to_stablehlo:: populateGatherScatterOpPatternsAndLegality( TypeConverter &typeConverter, RewritePatternSet &patterns, ConversionTarget &target, const TorchToStablehloOptions &options) { MLIRContext *context = patterns.getContext(); #define INSERT_ATENOP_PATTERN(AtenOp) \ target.addIllegalOp(); \ patterns.add>(typeConverter, context, options) INSERT_ATENOP_PATTERN(AtenEmbeddingOp); INSERT_ATENOP_PATTERN(AtenEmbeddingBagPaddingIdxOp); INSERT_ATENOP_PATTERN(AtenIndexSelectOp); INSERT_ATENOP_PATTERN(AtenGatherOp); INSERT_ATENOP_PATTERN(AtenSliceScatterOp); INSERT_ATENOP_PATTERN(AtenIndexTensorHackedTwinOp); INSERT_ATENOP_PATTERN(AtenIndexPutHackedTwinOp); INSERT_ATENOP_PATTERN(AtenGridSamplerOp); #undef INSERT_ATENOP_PATTERN #define INSERT_ATEN_SCATTER_PATTERN(AtenOp, reduceType) \ target.addIllegalOp(); \ patterns.add>(typeConverter, \ context, options) INSERT_ATEN_SCATTER_PATTERN(AtenScatterSrcOp, 0); // 0 for None reduce op INSERT_ATEN_SCATTER_PATTERN(AtenScatterAddOp, 1); // 1 for Add reduce op #undef INSERT_ATEN_SCATTER_PATTERN }