// RUN: torch-mlir-opt <%s -convert-torch-to-linalg -split-input-file -verify-diagnostics | FileCheck %s // ----- #CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }> // CHECK: #[[$CSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }> // CHECK-LABEL: func.func @sum( // CHECK-SAME: %[[A:.*]]: !torch.vtensor<[64,64],f32,#[[$CSR]]>) -> !torch.vtensor<[],f32> // CHECK: %[[S:.*]] = torch_c.to_builtin_tensor %[[A]] : !torch.vtensor<[64,64],f32,#[[$CSR]]> -> tensor<64x64xf32, #[[$CSR]]> // CHECK: linalg.generic {{{.*}}} ins(%[[S]] : tensor<64x64xf32, #[[$CSR]]>) func.func @sum(%arg0: !torch.vtensor<[64,64],f32,#CSR>) -> !torch.vtensor<[],f32> { %none = torch.constant.none %0 = torch.aten.sum %arg0, %none : !torch.vtensor<[64,64],f32,#CSR>, !torch.none -> !torch.vtensor<[],f32> return %0 : !torch.vtensor<[],f32> } // ----- #CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }> // CHECK: #[[$CSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }> // CHECK-LABEL: func.func @SpMM( // CHECK-SAME: %[[A:.*]]: !torch.vtensor<[8,16],f32,#[[$CSR]]>, // CHECK-SAME: %[[B:.*]]: !torch.vtensor<[16,8],f32>) -> !torch.vtensor<[8,8],f32> // CHECK-DAG: %[[S:.*]] = torch_c.to_builtin_tensor %[[A]] : !torch.vtensor<[8,16],f32,#[[$CSR]]> -> tensor<8x16xf32, #[[$CSR]]> // CHECK-DAG: %[[T:.*]] = torch_c.to_builtin_tensor %[[B]] : !torch.vtensor<[16,8],f32> -> tensor<16x8xf32> // CHECK: linalg.matmul ins(%[[S]], %[[T]] : tensor<8x16xf32, #[[$CSR]]>, tensor<16x8xf32>) func.func @SpMM(%arg0: !torch.vtensor<[8,16],f32,#CSR>, %arg1: !torch.vtensor<[16,8],f32>) -> !torch.vtensor<[8,8],f32> { %0 = torch.aten.matmul %arg0, %arg1 : !torch.vtensor<[8,16],f32,#CSR>, !torch.vtensor<[16,8],f32> -> !torch.vtensor<[8,8],f32> return %0 : !torch.vtensor<[8,8],f32> } // ----- #sparse = #sparse_tensor.encoding<{ map = (d0, d1, d2, d3, d4) -> (d0 : compressed(nonunique), d1 : singleton(nonunique, soa), d2 : singleton(nonunique, soa), d3 : singleton(nonunique, soa), d4 : singleton(soa) ), posWidth = 64, crdWidth = 64 }> // CHECK: #[[$ST:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2, d3, d4) -> (d0 : compressed(nonunique), d1 : singleton(nonunique, soa), d2 : singleton(nonunique, soa), d3 : singleton(nonunique, soa), d4 : singleton(soa)), posWidth = 64, crdWidth = 64 }> // CHECK-LABEL: func.func @activate( // CHECK-SAME: %[[A:.*]]: !torch.vtensor<[128,64,30,30,6],f32>) // CHECK: %[[D:.*]] = torch_c.to_builtin_tensor %arg0 : !torch.vtensor<[128,64,30,30,6],f32> -> tensor<128x64x30x30x6xf32> // CHECK: %[[C:.*]] = sparse_tensor.convert %0 : tensor<128x64x30x30x6xf32> to tensor<128x64x30x30x6xf32, #[[$ST]]> // CHECK: %[[R:.*]] = torch_c.from_builtin_tensor %[[C]] : tensor<128x64x30x30x6xf32, #[[$ST]]> -> !torch.vtensor<[128,64,30,30,6],f32,#[[$ST]]> // CHECK: return %[[R]] : !torch.vtensor<[128,64,30,30,6],f32,#[[$ST]]> func.func @activate(%arg0: !torch.vtensor<[128,64,30,30,6],f32>) -> !torch.vtensor<[128,64,30,30,6],f32,#sparse> { %none_0 = torch.constant.none %none_1 = torch.constant.none %none_2 = torch.constant.none %result = torch.operator "torch.aten._to_sparse"(%arg0, %none_0, %none_1, %none_2) : (!torch.vtensor<[128,64,30,30,6],f32>, !torch.none, !torch.none, !torch.none) -> !torch.vtensor<[128,64,30,30,6],f32,#sparse> return %result : !torch.vtensor<[128,64,30,30,6],f32,#sparse> } // ----- #sparse = #sparse_tensor.encoding<{ map = (d0, d1, d2, d3, d4) -> (d0 : compressed(nonunique), d1 : singleton(nonunique, soa), d2 : singleton(nonunique, soa), d3 : singleton(nonunique, soa), d4 : singleton(soa) ), posWidth = 64, crdWidth = 64 }> // CHECK: #[[$ST:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2, d3, d4) -> (d0 : compressed(nonunique), d1 : singleton(nonunique, soa), d2 : singleton(nonunique, soa), d3 : singleton(nonunique, soa), d4 : singleton(soa)), posWidth = 64, crdWidth = 64 }> // CHECK-LABEL: func.func @deactivate( // CHECK-SAME: %[[A:.*]]: !torch.vtensor<[128,64,30,30,6],f32,#[[$ST]]>) // CHECK: %[[D:.*]] = torch_c.to_builtin_tensor %arg0 : !torch.vtensor<[128,64,30,30,6],f32,#[[$ST]]> -> tensor<128x64x30x30x6xf32, #[[$ST]]> // CHECK: %[[C:.*]] = sparse_tensor.convert %0 : tensor<128x64x30x30x6xf32, #[[$ST]]> to tensor<128x64x30x30x6xf32> // CHECK: %[[R:.*]] = torch_c.from_builtin_tensor %[[C]] : tensor<128x64x30x30x6xf32> -> !torch.vtensor<[128,64,30,30,6],f32> // CHECK: return %[[R]] : !torch.vtensor<[128,64,30,30,6],f32> func.func @deactivate(%arg0: !torch.vtensor<[128,64,30,30,6],f32,#sparse>) -> !torch.vtensor<[128,64,30,30,6],f32> { %none_0 = torch.constant.none %none_1 = torch.constant.none %none_2 = torch.constant.none %result = torch.operator "torch.aten._to_dense"(%arg0, %none_0, %none_1, %none_2) : (!torch.vtensor<[128,64,30,30,6],f32,#sparse>, !torch.none, !torch.none, !torch.none) -> !torch.vtensor<[128,64,30,30,6],f32> return %result : !torch.vtensor<[128,64,30,30,6],f32> }