# -*- Python -*- # This file is licensed under a pytorch-style license # See frontends/pytorch/LICENSE for license information. import typing import torch import torch_mlir # RUN: %PYTHON %s | npcomp-opt | FileCheck %s mb = torch_mlir.ModuleBuilder() class TestModule(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x, y): return x * y # The symbol name of the function is NOT load-bearing and cannot be relied upon. # CHECK-LABEL: torch.class_type # CHECK-SAME: @[[CLASSTYPE:.*]] { # CHECK: torch.method "forward", @[[SYMNAME:.*]] # CHECK: } # CHECK-LABEL: func private # CHECK-SAME: @[[SYMNAME]]( # CHECK-SAME: %[[SELF:.*]]: !torch.nn.Module<"[[CLASSTYPE]]">, # CHECK-SAME: %[[X:.*]]: !numpy.ndarray<*:!numpy.any_dtype>, # CHECK-SAME: %[[Y:.*]]: !numpy.ndarray<*:!numpy.any_dtype>) -> !numpy.ndarray<*:!numpy.any_dtype> { # CHECK: %[[RET:.*]] = torch.kernel_call "aten::mul" %[[X]], %[[Y]] # CHECK: return %[[RET]] : !numpy.ndarray<*:!numpy.any_dtype> # CHECK: %[[ROOT:.*]] = torch.nn_module { # CHECK: } : !torch.nn.Module<"[[CLASSTYPE]]"> test_module = TestModule() recursivescriptmodule = torch.jit.script(test_module) # TODO: Automatically handle unpacking Python class RecursiveScriptModule into the underlying ScriptModule. mb.import_module(recursivescriptmodule._c) mb.module.operation.print()