#!/bin/bash # Copyright 2022 The IREE Authors # # Licensed under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # build_linux_packages.sh # One stop build of IREE Python packages for Linux. The Linux build is # complicated because it has to be done via a docker container that has # an LTS glibc version, all Python packages and other deps. # This script handles all of those details. # # Usage: # Build everything (all packages, all python versions): # ./build_tools/python_deploy/build_linux_packages.sh # # Build specific Python versions and packages to custom directory: # TM_PYTHON_VERSIONS="cp38-cp38 cp39-cp39" \ # TM_PACKAGES="torch-mlir" \ # TM_OUTPUT_DIR="/tmp/wheelhouse" \ # ./build_tools/python_deploy/build_linux_packages.sh # # Valid Python versions match a subdirectory under /opt/python in the docker # image. Typically: # cp39-cp39 cp310-cp310 # # Valid packages: # torch-mlir, in-tree, out-of-tree # # Note that this script is meant to be run on CI and it will pollute both the # output directory and in-tree build/ directories with docker created, root owned builds. # Sorry - there is no good way around it but TODO: move to using user UID/GID. # # It can be run on a workstation but recommend using a git worktree dedicated # to packaging to avoid stomping on development artifacts. set -eu -o errtrace this_dir="$(cd "$(dirname "$0")" && pwd)" repo_root="$(cd "$this_dir"/../../ && pwd)" # This needs to be a manylinux image so we can ship pip packages TM_RELEASE_DOCKER_IMAGE="${TM_RELEASE_DOCKER_IMAGE:-stellaraccident/manylinux2014_x86_64-bazel-5.1.0:latest}" # This assumes an Ubuntu LTS like image. You can build your own with # ./build_tools/docker/Dockerfile TM_CI_DOCKER_IMAGE="${TM_CI_DOCKER_IMAGE:-powderluv/torch-mlir-ci:latest}" # Version of Python to use in Release builds. Ignored in CIs. TM_PYTHON_VERSIONS="${TM_PYTHON_VERSIONS:-cp37-cp37m cp310-cp310}" # Location to store Release wheels TM_OUTPUT_DIR="${TM_OUTPUT_DIR:-${this_dir}/wheelhouse}" # What "packages to build" TM_PACKAGES="${TM_PACKAGES:-torch-mlir}" # Use pre-built Pytorch TM_USE_PYTORCH_BINARY="${TM_USE_PYTORCH_BINARY:-ON}" # Skip running tests if you want quick iteration TM_SKIP_TESTS="${TM_SKIP_TESTS:-OFF}" # Update ODS and shape library files TM_UPDATE_ODS_AND_SHAPE_LIB="${TM_UPDATE_ODS_AND_SHAPE_LIB:-OFF}" PKG_VER_FILE="${repo_root}"/torch_mlir_package_version ; [ -f "$PKG_VER_FILE" ] && . "$PKG_VER_FILE" TORCH_MLIR_PYTHON_PACKAGE_VERSION="${TORCH_MLIR_PYTHON_PACKAGE_VERSION:-0.0.1}" echo "Setting torch-mlir Python Package version to: ${TORCH_MLIR_PYTHON_PACKAGE_VERSION}" export TORCH_MLIR_SRC_PYTORCH_REPO="${TORCH_MLIR_SRC_PYTORCH_REPO:-pytorch/pytorch}" echo "Setting torch-mlir PyTorch Repo for source builds to: ${TORCH_MLIR_SRC_PYTORCH_REPO}" export TORCH_MLIR_SRC_PYTORCH_BRANCH="${TORCH_MLIR_SRC_PYTORCH_BRANCH:-master}" echo "Setting torch-mlir PyTorch version for source builds to: ${TORCH_MLIR_SRC_PYTORCH_BRANCH}" # If using PyTorch source, install from the existing build instead of rebuilding # all of PyTorch. This option is useful in CI, when it determines that the # PyTorch version has not changed between consecutive runs. export TM_PYTORCH_INSTALL_WITHOUT_REBUILD="${TM_PYTORCH_INSTALL_WITHOUT_REBUILD:-false}" function run_on_host() { echo "Running on host for $1:$@" echo "Outputting to ${TM_OUTPUT_DIR}" if [[ $TM_PYTORCH_INSTALL_WITHOUT_REBUILD != "true" ]]; then # We want to use the cached files, so don't remove them. rm -rf "${TM_OUTPUT_DIR}" fi mkdir -p "${TM_OUTPUT_DIR}" case "$package" in torch-mlir) TM_CURRENT_DOCKER_IMAGE=${TM_RELEASE_DOCKER_IMAGE} export USERID=0 export GROUPID=0 ;; out-of-tree) TM_CURRENT_DOCKER_IMAGE=${TM_CI_DOCKER_IMAGE} # CI uses only Python3.10 TM_PYTHON_VERSIONS="cp310-cp310" export USERID=$(id -u) export GROUPID=$(id -g) ;; in-tree) TM_CURRENT_DOCKER_IMAGE=${TM_CI_DOCKER_IMAGE} # CI uses only Python3.10 TM_PYTHON_VERSIONS="cp310-cp310" export USERID=$(id -u) export GROUPID=$(id -g) ;; *) echo "Unrecognized package '$package'" exit 1 ;; esac echo "Launching docker image ${TM_CURRENT_DOCKER_IMAGE} with UID:${USERID} GID:${GROUPID}" docker run --rm \ -v "${repo_root}:/main_checkout/torch-mlir" \ -v "${TM_OUTPUT_DIR}:/wheelhouse" \ -v "${HOME}:/home/${USER}" \ --user ${USERID}:${GROUPID} \ --workdir="/home/$USER" \ --volume="/etc/group:/etc/group:ro" \ --volume="/etc/passwd:/etc/passwd:ro" \ --volume="/etc/shadow:/etc/shadow:ro" \ --ipc=host \ -e __MANYLINUX_BUILD_WHEELS_IN_DOCKER=1 \ -e "TORCH_MLIR_PYTHON_PACKAGE_VERSION=${TORCH_MLIR_PYTHON_PACKAGE_VERSION}" \ -e "TM_PYTHON_VERSIONS=${TM_PYTHON_VERSIONS}" \ -e "TM_PACKAGES=${package}" \ -e "TM_SKIP_TESTS=${TM_SKIP_TESTS}" \ -e "TM_UPDATE_ODS_AND_SHAPE_LIB=${TM_UPDATE_ODS_AND_SHAPE_LIB}" \ -e "TM_USE_PYTORCH_BINARY=${TM_USE_PYTORCH_BINARY}" \ -e "TORCH_MLIR_SRC_PYTORCH_REPO=${TORCH_MLIR_SRC_PYTORCH_REPO}" \ -e "TORCH_MLIR_SRC_PYTORCH_BRANCH=${TORCH_MLIR_SRC_PYTORCH_BRANCH}" \ -e "TM_PYTORCH_INSTALL_WITHOUT_REBUILD=${TM_PYTORCH_INSTALL_WITHOUT_REBUILD}" \ -e "CCACHE_DIR=/main_checkout/torch-mlir/.ccache" \ "${TM_CURRENT_DOCKER_IMAGE}" \ /bin/bash /main_checkout/torch-mlir/build_tools/python_deploy/build_linux_packages.sh } function run_in_docker() { echo "Running in docker" echo "Using python versions: ${TM_PYTHON_VERSIONS}" local orig_path="$PATH" # Build phase. for package in $TM_PACKAGES; do echo "******************** BUILDING PACKAGE ${package} (docker) ************" for python_version in $TM_PYTHON_VERSIONS; do python_dir="/opt/python/$python_version" if ! [ -x "$python_dir/bin/python" ]; then echo "Could not find python: $python_dir (using system default Python3)" python_dir=`which python3` echo "Defaulting to $python_dir (expected for CI builds)" fi export PATH=$python_dir/bin:$orig_path echo ":::: Python version $(python3 --version)" case "$package" in torch-mlir) clean_wheels torch_mlir "$python_version" build_torch_mlir #run_audit_wheel torch_mlir "$python_version" clean_build torch_mlir "$python_version" ;; out-of-tree) setup_venv "$python_version" build_out_of_tree "$TM_USE_PYTORCH_BINARY" "$python_version" if [ "${TM_SKIP_TESTS}" == "OFF" ]; then test_out_of_tree fi ;; in-tree) setup_venv "$python_version" build_in_tree "$TM_USE_PYTORCH_BINARY" "$python_version" if [ "${TM_UPDATE_ODS_AND_SHAPE_LIB}" == "ON" ]; then pushd /main_checkout/torch-mlir ./build_tools/update_torch_ods.sh ./build_tools/update_shape_lib.sh popd fi if [ "${TM_SKIP_TESTS}" == "OFF" ]; then test_in_tree; fi ;; *) echo "Unrecognized package '$package'" exit 1 ;; esac done done } function build_in_tree() { local torch_from_bin="$1" local python_version="$2" echo ":::: Build in-tree Torch from binary: $torch_from_bin with Python: $python_version" cmake -GNinja -B/main_checkout/torch-mlir/build \ -DCMAKE_BUILD_TYPE=Release \ -DCMAKE_C_COMPILER=clang \ -DCMAKE_CXX_COMPILER=clang++ \ -DCMAKE_EXE_LINKER_FLAGS_INIT="-fuse-ld=lld" \ -DCMAKE_MODULE_LINKER_FLAGS_INIT="-fuse-ld=lld" \ -DCMAKE_SHARED_LINKER_FLAGS_INIT="-fuse-ld=lld" \ -DLLVM_ENABLE_ASSERTIONS=ON \ -DCMAKE_C_COMPILER_LAUNCHER=ccache \ -DCMAKE_CXX_COMPILER_LAUNCHER=ccache \ -DLLVM_ENABLE_PROJECTS=mlir \ -DLLVM_EXTERNAL_PROJECTS="torch-mlir;torch-mlir-dialects" \ -DLLVM_EXTERNAL_TORCH_MLIR_SOURCE_DIR="/main_checkout/torch-mlir" \ -DLLVM_EXTERNAL_TORCH_MLIR_DIALECTS_SOURCE_DIR="/main_checkout/torch-mlir/externals/llvm-external-projects/torch-mlir-dialects" \ -DLLVM_TARGETS_TO_BUILD=host \ -DMLIR_ENABLE_BINDINGS_PYTHON=ON \ -DTORCH_MLIR_ENABLE_LTC=ON \ -DTORCH_MLIR_USE_INSTALLED_PYTORCH="$torch_from_bin" \ -DTORCH_MLIR_SRC_PYTORCH_REPO=${TORCH_MLIR_SRC_PYTORCH_REPO} \ -DTORCH_MLIR_SRC_PYTORCH_BRANCH=${TORCH_MLIR_SRC_PYTORCH_BRANCH} \ -DTM_PYTORCH_INSTALL_WITHOUT_REBUILD=${TM_PYTORCH_INSTALL_WITHOUT_REBUILD} \ -DPython3_EXECUTABLE="$(which python3)" \ /main_checkout/torch-mlir/externals/llvm-project/llvm cmake --build /main_checkout/torch-mlir/build ccache -s } function _check_file_not_changed_by() { # _check_file_not_changed_by cmd="$1" file="$2" file_backup="$PWD/$(basename $file)" file_new="$PWD/$(basename $file).new" # Save the original file. cp "$file" "$file_backup" # Run the command to regenerate it. "$1" || return 1 # Save the new generated file. cp "$file" "$file_new" # Restore the original file. We want this function to not change the user's # working tree state. mv "$file_backup" "$file" # We use git-diff as "just a diff program" (no SCM stuff) because it has # nicer output than regular `diff`. if ! git diff --no-index --quiet "$file" "$file_new"; then echo "#######################################################" echo "Generated file '${file}' is not up to date (see diff below)" echo ">>> Please run '${cmd}' to update it <<<" echo "#######################################################" git diff --no-index --color=always "$file" "$file_new" # TODO: Is there a better cleanup strategy that doesn't require duplicating # this inside and outside the `if`? rm "$file_new" return 1 fi rm "$file_new" } function test_in_tree() { echo ":::: Test in-tree" cmake --build /main_checkout/torch-mlir/build --target check-torch-mlir-all cd /main_checkout/torch-mlir/ export PYTHONPATH="/main_checkout/torch-mlir/build/tools/torch-mlir/python_packages/torch_mlir" echo ":::: Check that update_shape_lib.sh has been run" _check_file_not_changed_by ./build_tools/update_shape_lib.sh lib/Dialect/Torch/Transforms/ShapeLibrary.cpp echo ":::: Check that update_torch_ods.sh has been run" _check_file_not_changed_by ./build_tools/update_torch_ods.sh include/torch-mlir/Dialect/Torch/IR/GeneratedTorchOps.td echo ":::: Run refbackend e2e integration tests" python -m e2e_testing.main --config=refbackend -v echo ":::: Run eager_mode e2e integration tests" python -m e2e_testing.main --config=eager_mode -v echo ":::: Run MHLO e2e integration tests" python -m e2e_testing.main --config=mhlo -v echo ":::: Run TOSA e2e integration tests" python -m e2e_testing.main --config=tosa -v echo ":::: Run Lazy Tensor Core e2e integration tests" python -m e2e_testing.main --config=lazy_tensor_core -v echo ":::: Run TorchDynamo e2e integration tests" python -m e2e_testing.main --config=torchdynamo -v } function setup_venv() { local python_version="$1" echo ":::: Setting up VENV with Python: $python_version" python3 -m venv /main_checkout/torch-mlir/docker_venv source /main_checkout/torch-mlir/docker_venv/bin/activate echo ":::: pip installing dependencies" python3 -m pip install --no-cache-dir -r /main_checkout/torch-mlir/externals/llvm-project/mlir/python/requirements.txt python3 -m pip install --no-cache-dir -r /main_checkout/torch-mlir/requirements.txt } function build_out_of_tree() { local torch_from_bin="$1" local python_version="$2" echo ":::: Build out-of-tree Torch from binary: $torch_from_bin with Python: $python_version" if [ ! -d "/main_checkout/torch-mlir/llvm-build/lib/cmake/mlir/" ] then echo ":::: LLVM / MLIR is not built so building it first.." cmake -GNinja -B/main_checkout/torch-mlir/llvm-build \ -DCMAKE_BUILD_TYPE=Release \ -DCMAKE_C_COMPILER=clang \ -DCMAKE_CXX_COMPILER=clang++ \ -DCMAKE_C_COMPILER_LAUNCHER=ccache \ -DCMAKE_CXX_COMPILER_LAUNCHER=ccache \ -DCMAKE_EXE_LINKER_FLAGS_INIT="-fuse-ld=lld" \ -DCMAKE_MODULE_LINKER_FLAGS_INIT="-fuse-ld=lld" \ -DCMAKE_SHARED_LINKER_FLAGS_INIT="-fuse-ld=lld" \ -DLLVM_ENABLE_ASSERTIONS=ON \ -DLLVM_ENABLE_PROJECTS=mlir \ -DLLVM_TARGETS_TO_BUILD=host \ -DMLIR_ENABLE_BINDINGS_PYTHON=ON \ -DPython3_EXECUTABLE="$(which python3)" \ /main_checkout/torch-mlir/externals/llvm-project/llvm cmake --build /main_checkout/torch-mlir/llvm-build fi # Incremental builds come here directly and can run cmake if required. cmake -GNinja -B/main_checkout/torch-mlir/build_oot \ -DCMAKE_C_COMPILER=clang \ -DCMAKE_CXX_COMPILER=clang++ \ -DCMAKE_C_COMPILER_LAUNCHER=ccache \ -DCMAKE_CXX_COMPILER_LAUNCHER=ccache \ -DCMAKE_EXE_LINKER_FLAGS_INIT="-fuse-ld=lld" \ -DCMAKE_MODULE_LINKER_FLAGS_INIT="-fuse-ld=lld" \ -DCMAKE_SHARED_LINKER_FLAGS_INIT="-fuse-ld=lld" \ -DLLVM_DIR="/main_checkout/torch-mlir/llvm-build/lib/cmake/llvm/" \ -DMLIR_DIR="/main_checkout/torch-mlir/llvm-build/lib/cmake/mlir/" \ -DMLIR_ENABLE_BINDINGS_PYTHON=OFF \ -DTORCH_MLIR_ENABLE_LTC=ON \ -DTORCH_MLIR_USE_INSTALLED_PYTORCH="$torch_from_bin" \ -DTORCH_MLIR_SRC_PYTORCH_REPO=${TORCH_MLIR_SRC_PYTORCH_REPO} \ -DTORCH_MLIR_SRC_PYTORCH_BRANCH=${TORCH_MLIR_SRC_PYTORCH_BRANCH} \ -DTM_PYTORCH_INSTALL_WITHOUT_REBUILD=${TM_PYTORCH_INSTALL_WITHOUT_REBUILD} \ -DPython3_EXECUTABLE="$(which python3)" \ /main_checkout/torch-mlir cmake --build /main_checkout/torch-mlir/build_oot ccache -s } function test_out_of_tree() { echo ":::: Test out-of-tree" cmake --build /main_checkout/torch-mlir/build_oot --target check-torch-mlir-all } function clean_build() { # clean up for recursive runs local package="$1" local python_version="$2" echo ":::: Clean build dir $package $python_version" rm -rf /main_checkout/torch-mlir/build /main_checkout/torch-mlir/llvm-build /main_checkout/torch-mlir/docker_venv /main_checkout/torch-mlir/libtorch } function build_torch_mlir() { python -m pip install --no-cache-dir -r /main_checkout/torch-mlir/requirements.txt \ --extra-index-url https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html CMAKE_GENERATOR=Ninja \ TORCH_MLIR_PYTHON_PACKAGE_VERSION=${TORCH_MLIR_PYTHON_PACKAGE_VERSION} \ python -m pip wheel -v -w /wheelhouse /main_checkout/torch-mlir \ -f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html \ -r /main_checkout/torch-mlir/whl-requirements.txt } function run_audit_wheel() { local wheel_basename="$1" local python_version="$2" generic_wheel="/wheelhouse/${wheel_basename}-*-${python_version}-linux_x86_64.whl" echo ":::: Auditwheel $generic_wheel" auditwheel repair -w /wheelhouse "$generic_wheel" rm "$generic_wheel" } function clean_wheels() { local wheel_basename="$1" local python_version="$2" echo ":::: Clean wheels $wheel_basename $python_version" rm -f /wheelhouse/"${wheel_basename}"-*-"${python_version}"-*.whl } # Trampoline to the docker container if running on the host. if [ -z "${__MANYLINUX_BUILD_WHEELS_IN_DOCKER-}" ]; then for package in $TM_PACKAGES; do echo "******************** BUILDING PACKAGE ${package} (host) *************" run_on_host "${package} $@" done else run_in_docker "$@" fi