# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception import torch from torch_mlir.torchscript.e2e_test.framework import TestUtils from torch_mlir.torchscript.e2e_test.registry import register_test_case from torch_mlir.torchscript.annotations import annotate_args, export # ============================================================================== class Conv2dNoPaddingModule(torch.nn.Module): def __init__(self): super().__init__() torch.manual_seed(0) self.conv = torch.nn.Conv2d(2, 10, 3, bias = False) self.train(False) @export @annotate_args([ None, ([-1, -1, -1, -1], torch.float32, True), ]) def forward(self, x): return self.conv(x) @register_test_case(module_factory=lambda: Conv2dNoPaddingModule()) def Conv2dNoPaddingModule_basic(module, tu: TestUtils): t = tu.rand(5, 2, 10, 20) module.forward(t) class Conv2dWithPaddingModule(torch.nn.Module): def __init__(self): super().__init__() torch.manual_seed(0) self.conv = torch.nn.Conv2d(2, 10, 3, bias = False, padding = 3) self.train(False) @export @annotate_args([ None, ([-1, -1, -1, -1], torch.float32, True), ]) def forward(self, x): return self.conv(x) @register_test_case(module_factory=lambda: Conv2dWithPaddingModule()) def Conv2dWithPaddingModule_basic(module, tu: TestUtils): t = tu.rand(5, 2, 10, 20) module.forward(t)