# -*- Python -*- # This file is licensed under a pytorch-style license # See frontends/pytorch/LICENSE for license information. import torch import torch_mlir import typing # RUN: %PYTHON %s | npcomp-opt | FileCheck %s mb = torch_mlir.ModuleBuilder() # CHECK-LABEL: func @__torch__.prim_Loop_forlike( # CHECK-SAME: %[[MAX_ITERATIONS:.*]]: !torch.int) -> !torch.float { # CHECK: %[[BOOL_TRUE:.*]] = torch.constant.bool true # CHECK: %[[F_INIT:.*]] = torch.constant.float 0.000000e+00 # CHECK: %[[RESULTS:.*]] = torch.prim.Loop %[[MAX_ITERATIONS]], %[[BOOL_TRUE]], init(%[[F_INIT]]) { # CHECK: ^bb0(%[[IV:.*]]: !torch.int, %[[F_ITER:.*]]: !torch.float): # CHECK: %[[F_NEXT:.*]] = torch.aten.add.float_int %[[F_ITER]], %[[IV]] : !torch.float, !torch.int -> !torch.float # CHECK: torch.prim.Loop.condition %[[BOOL_TRUE]], iter(%[[F_NEXT]] : !torch.float) # CHECK: } : (!torch.int, !torch.bool, !torch.float) -> !torch.float # CHECK: return %[[RESULTS:.*]] : !torch.float @mb.import_function @torch.jit.script def prim_Loop_forlike(n: int): f = 0.0 for i in range(n): f += i return f # CHECK-LABEL: func @__torch__.prim_Loop_whilelike( # CHECK-SAME: %[[VAL_0:.*]]: !torch.int) -> !torch.float { # CHECK: %[[F_INIT:.*]] = torch.constant.float 3.200000e+00 # CHECK: %[[MAX_ITERATIONS:.*]] = torch.constant.int 9223372036854775807 # CHECK: %[[COND_INIT:.*]] = torch.aten.lt.float_int %[[F_INIT]], %[[VAL_0]] : !torch.float, !torch.int -> !torch.bool # CHECK: %[[RET:.*]] = torch.prim.Loop %[[MAX_ITERATIONS]], %[[COND_INIT]], init(%[[F_INIT]]) { # CHECK: ^bb0(%[[F_ITER:.*]]: !torch.int, %[[F_ITER:.*]]: !torch.float): # CHECK: %[[F_NEXT:.*]] = torch.aten.mul.float %[[F_ITER]], %[[F_ITER]] : !torch.float, !torch.float -> !torch.float # CHECK: %[[COND_ITER:.*]] = torch.aten.lt.float_int %[[F_NEXT]], %[[VAL_0]] : !torch.float, !torch.int -> !torch.bool # CHECK: torch.prim.Loop.condition %[[COND_ITER]], iter(%[[F_NEXT]] : !torch.float) # CHECK: } : (!torch.int, !torch.bool, !torch.float) -> !torch.float # CHECK: return %[[RET:.*]] : !torch.float @mb.import_function @torch.jit.script def prim_Loop_whilelike(n: int): f = 3.2 while f < n: f = f * f return f # CHECK-LABEL: func @__torch__.prim_Loop_derefine( # CHECK-SAME: %[[ARG:.*]]: !torch.int) -> !torch.optional { # CHECK: %[[TRUE:.*]] = torch.constant.bool true # CHECK: %[[NONE:.*]] = torch.constant.none # CHECK: %[[NONE_DEREFINED:.*]] = torch.derefine %[[NONE]] : !torch.none to !torch.optional # CHECK: %[[RET:.*]] = torch.prim.Loop %[[ARG]], %[[TRUE]], init(%[[NONE_DEREFINED]]) { # CHECK: ^bb0(%[[IV:.*]]: !torch.int, %[[X_ITER:.*]]: !torch.optional): # CHECK: %[[X_NEXT:.*]] = torch.derefine %[[ARG]] : !torch.int to !torch.optional # CHECK: torch.prim.Loop.condition %[[TRUE]], iter(%[[X_NEXT]] : !torch.optional) # CHECK: } : (!torch.int, !torch.bool, !torch.optional) -> !torch.optional # CHECK: return %[[RET:.*]] : !torch.optional @mb.import_function @torch.jit.script def prim_Loop_derefine(n: int): x: typing.Optional[int] = None for i in range(n): x = n return x mb.module.operation.print() print()