# -*- Python -*- # This file is licensed under a pytorch-style license # See frontends/pytorch/LICENSE for license information. import typing import torch import torch_mlir import typing # RUN: %PYTHON %s | npcomp-opt | FileCheck %s mb = torch_mlir.ModuleBuilder() # CHECK-LABEL: func @__torch__.prim_NumToTensor( # CHECK-SAME: %[[ARG:.*]]: i64) -> !numpy.ndarray<*:!numpy.any_dtype> { # CHECK: %[[RET:.*]] = torch.prim.NumToTensor %[[ARG]] : i64 -> !numpy.ndarray<*:!numpy.any_dtype> # CHECK: return %[[RET]] : !numpy.ndarray<*:!numpy.any_dtype> # CHECK: } @mb.import_function @torch.jit.script def prim_NumToTensor(i: int): return _to_tensor(i) # CHECK-LABEL: func @__torch__.prim_Print( # CHECK-SAME: %[[ARG:.*]]: !numpy.ndarray<*:!numpy.any_dtype>) -> !basicpy.NoneType { # CHECK: %[[STR:.*]] = basicpy.bytes_constant "x" # CHECK: torch.prim.Print(%[[STR]], %[[ARG]]) : !basicpy.BytesType, !numpy.ndarray<*:!numpy.any_dtype> @mb.import_function @torch.jit.script def prim_Print(x): print("x", x) # CHECK-LABEL: func @__torch__.prim_RaiseException() -> !basicpy.NoneType { # CHECK: %[[ERRORSTR:.*]] = basicpy.bytes_constant "Error" # CHECK: %[[NONE:.*]] = torch.prim.Uninitialized : !basicpy.NoneType # CHECK: torch.prim.RaiseException %[[ERRORSTR]] # CHECK: return %[[NONE]] : !basicpy.NoneType @mb.import_function @torch.jit.script def prim_RaiseException(): raise Exception("Error") # CHECK-LABEL: func @__torch__.prim_unchecked_cast( # CHECK-SAME: %[[ARG:.*]]: !torch.optional) -> i64 { # CHECK: %[[NONE:.*]] = basicpy.singleton : !basicpy.NoneType # CHECK: %[[C3:.*]] = constant 3 : i64 # CHECK: %[[IS_NONE:.*]] = torch.kernel_call "aten::__is__" %[[ARG]], %[[NONE]] : (!torch.optional, !basicpy.NoneType) -> !basicpy.BoolType # CHECK: %[[COND:.*]] = basicpy.bool_cast %[[IS_NONE]] : !basicpy.BoolType -> i1 # CHECK: %[[RESULT:.*]] = scf.if %[[COND]] -> (i64) { # CHECK: scf.yield %[[C3]] : i64 # CHECK: } else { # CHECK: %[[CASTED:.*]] = torch.prim.unchecked_cast %[[ARG]] : !torch.optional -> i64 # CHECK: scf.yield %[[CASTED]] : i64 # CHECK: } # CHECK: return %[[RESULT:.*]] : i64 @mb.import_function @torch.jit.script def prim_unchecked_cast(i: typing.Optional[int]): if i is None: return 3 return i # CHECK-LABEL: func @__torch__.prim_TupleUnpack( # CHECK-SAME: %[[ARG:.*]]: !basicpy.TupleType) -> i64 { # CHECK: %[[RET:.*]]:2 = torch.prim.TupleUnpack %[[ARG]] : !basicpy.TupleType -> i64, i64 # CHECK: return %[[RET]]#0 : i64 @mb.import_function @torch.jit.script def prim_TupleUnpack(tup: typing.Tuple[int, int]): val, _ = tup return val # CHECK-LABEL: func @__torch__.prim_TupleIndex( # CHECK-SAME: %[[ARG:.*]]: !basicpy.TupleType) -> i64 { # CHECK: %[[RET:.*]] = torch.prim.TupleIndex %[[ARG]], %[[IDX:.*]] : !basicpy.TupleType, i64 -> i64 # CHECK: return %[[RET]] : i64 @mb.import_function @torch.jit.script def prim_TupleIndex(tup: typing.Tuple[int, int]): return tup[0] # CHECK-LABEL: func @__torch__.prim_ListUnpack( # CHECK-SAME: %[[ARG:.*]]: !basicpy.ListType) -> i64 { # CHECK: %[[RET:.*]]:3 = torch.prim.ListUnpack %[[ARG]] : !basicpy.ListType -> i64, i64 # CHECK: return %[[RET]]#1 : i64 @mb.import_function @torch.jit.script def prim_ListUnpack(l: typing.List[int]): _, val, _ = l return val # CHECK-LABEL: func @__torch__.prim_dtype( # CHECK-SAME: %[[ARG:.*]]: !numpy.ndarray<*:!numpy.any_dtype>) -> i64 { # CHECK: %[[RET:.*]] = torch.prim.dtype %[[ARG]] : !numpy.ndarray<*:!numpy.any_dtype> -> i64 # CHECK: return %[[RET]] : i64 @mb.import_function @torch.jit.script def prim_dtype(x): return x.dtype # CHECK-LABEL: func @__torch__.prim_device( # CHECK-SAME: %[[ARG:.*]]: !numpy.ndarray<*:!numpy.any_dtype>) -> !torch.Device { # CHECK: %[[RET:.*]] = torch.prim.device %[[ARG]] : !numpy.ndarray<*:!numpy.any_dtype> -> !torch.Device # CHECK: return %[[RET]] : !torch.Device @mb.import_function @torch.jit.script def prim_device(x): return x.device mb.module.operation.print() print()