//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // Also available under a BSD-style license. See LICENSE. // //===----------------------------------------------------------------------===// #include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/TypeUtilities.h" #include "torch-mlir/Dialect/Torch/IR/TorchTypes.h" #include "llvm/ADT/StringMap.h" using namespace mlir; using namespace mlir::torch; using namespace mlir::torch::TorchConversion; using namespace mlir::torch; static bool haveSameSizeAndElementType(TensorType lhs, TensorType rhs) { if (lhs.hasRank() != rhs.hasRank()) return false; bool sameSize = lhs.hasRank() ? lhs.getShape().equals(rhs.getShape()) : true; bool sameElementType = lhs.getElementType() == rhs.getElementType(); return sameElementType && sameSize; } //===----------------------------------------------------------------------===// // ToBuiltinTensorOp //===----------------------------------------------------------------------===// LogicalResult ToBuiltinTensorOp::verify() { auto resultType = getResult().getType().cast(); auto operandType = getOperand().getType().cast().toBuiltinTensor(); if (!haveSameSizeAndElementType(resultType, operandType)) { return emitError() << "operand and result must have the same size and dtype"; } return success(); } LogicalResult ToBuiltinTensorOp::inferReturnTypes( MLIRContext *context, std::optional location, ValueRange operands, DictionaryAttr attributes, OpaqueProperties properties, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { auto resultType = operands[0].getType().cast().toBuiltinTensor(); if (!resultType) return failure(); inferredReturnTypes.push_back(resultType); return success(); } //===----------------------------------------------------------------------===// // FromBuiltinTensorOp //===----------------------------------------------------------------------===// LogicalResult FromBuiltinTensorOp::verify() { auto resultType = getResult().getType().cast().toBuiltinTensor(); auto operandType = getOperand().getType().cast(); if (!haveSameSizeAndElementType(resultType, operandType)) { return emitError() << "operand and result must have the same size and dtype"; } return success(); } //===----------------------------------------------------------------------===// // FromI64Op //===----------------------------------------------------------------------===// OpFoldResult FromI64Op::fold(FoldAdaptor adaptor) { auto attr = adaptor.getOperand().dyn_cast_or_null(); if (attr) { return attr; } else { return nullptr; } } //===----------------------------------------------------------------------===// // ToI64Op //===----------------------------------------------------------------------===// OpFoldResult ToI64Op::fold(FoldAdaptor adaptor) { auto attr = adaptor.getOperand().dyn_cast_or_null(); if (attr) { return attr; } else { return nullptr; } } //===----------------------------------------------------------------------===// // ToF64Op //===----------------------------------------------------------------------===// OpFoldResult ToF64Op::fold(FoldAdaptor adaptor) { auto attr = adaptor.getOperand().dyn_cast_or_null(); if (attr) { return attr; } else { return nullptr; } } //===----------------------------------------------------------------------===// // FromF64Op //===----------------------------------------------------------------------===// OpFoldResult FromF64Op::fold(FoldAdaptor adaptor) { auto attr = adaptor.getOperand().dyn_cast_or_null(); if (attr) { return attr; } else { return nullptr; } } #define GET_OP_CLASSES #include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.cpp.inc"