// RUN: torch-mlir-opt <%s -convert-torch-to-mhlo -split-input-file -verify-diagnostics | FileCheck %s // ----- // CHECK-LABEL: func.func @torch.aten.clone$basic( // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[T0:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[NONE:.*]] = torch.constant.none // CHECK: %[[T1:.*]] = mhlo.copy %[[T0]] : tensor // CHECK: %[[T2:.*]] = torch_c.from_builtin_tensor %[[T1]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[T2]] : !torch.vtensor<[?,?],f32> func.func @torch.aten.clone$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %none = torch.constant.none %0 = torch.aten.clone %arg0, %none : !torch.vtensor<[?,?],f32>, !torch.none -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func.func @torch.vtensor.literal$basic() -> !torch.vtensor<[],f32> { // CHECK: %[[VAL_0:.*]] = mhlo.constant dense<0.000000e+00> : tensor // CHECK: %[[VAL_1:.*]] = torch_c.from_builtin_tensor %[[VAL_0]] : tensor -> !torch.vtensor<[],f32> // CHECK: return %[[VAL_1]] : !torch.vtensor<[],f32> func.func @torch.vtensor.literal$basic() -> !torch.vtensor<[],f32> { %0 = torch.vtensor.literal(dense<0.0> : tensor) : !torch.vtensor<[],f32> return %0 : !torch.vtensor<[],f32> } // ----- // CHECK-LABEL: func.func @torch.vtensor.literal$signed() -> !torch.vtensor<[2],si64> { // CHECK: %[[VAL_0:.*]] = mhlo.constant dense<1> : tensor<2xi64> // CHECK: %[[VAL_1:.*]] = torch_c.from_builtin_tensor %[[VAL_0]] : tensor<2xi64> -> !torch.vtensor<[2],si64> // CHECK: return %[[VAL_1]] : !torch.vtensor<[2],si64> func.func @torch.vtensor.literal$signed() -> !torch.vtensor<[2],si64> { %0 = torch.vtensor.literal(dense<1> : tensor<2xsi64>) : !torch.vtensor<[2],si64> return %0 : !torch.vtensor<[2],si64> } // ----- // CHECK-LABEL: func.func @torch.prim.NumToTensor.Scalar$basic( // CHECK-SAME: ) -> !torch.vtensor<[],si64> { // CHECK: %[[INT1:.*]] = torch.constant.int 1 // CHECK: %[[T0:.*]] = torch_c.to_i64 %[[INT1]] // CHECK: %[[T1:.*]] = tensor.from_elements %[[T0]] : tensor<1xi64> // CHECK: %[[T2:.*]] = mhlo.convert %[[T1]] : tensor<1xi64> // CHECK: %[[T3:.*]] = mhlo.reshape %[[T2]] : (tensor<1xi64>) -> tensor // CHECK: %[[T4:.*]] = torch_c.from_builtin_tensor %[[T3]] : tensor -> !torch.vtensor<[],si64> // CHECK: return %[[T4]] : !torch.vtensor<[],si64> func.func @torch.prim.NumToTensor.Scalar$basic() -> !torch.vtensor<[], si64> { %int1 = torch.constant.int 1 %0 = torch.prim.NumToTensor.Scalar %int1 : !torch.int -> !torch.vtensor<[], si64> return %0 : !torch.vtensor<[], si64> } // ----- // CHECK-LABEL: func.func @torch.aten.contiguous( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[4,64],f32>) -> !torch.vtensor<[4,64],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[4,64],f32> -> tensor<4x64xf32> // CHECK: %int0 = torch.constant.int 0 // CHECK: %[[VAL_2:.*]] = torch_c.from_builtin_tensor %[[VAL_1]] : tensor<4x64xf32> -> !torch.vtensor<[4,64],f32> // CHECK: return %[[VAL_2]] : !torch.vtensor<[4,64],f32> func.func @torch.aten.contiguous(%arg0: !torch.vtensor<[4,64],f32>) -> !torch.vtensor<[4,64],f32> { %int0 = torch.constant.int 0 %0 = torch.aten.contiguous %arg0, %int0 : !torch.vtensor<[4,64],f32>, !torch.int -> !torch.vtensor<[4,64],f32> return %0 : !torch.vtensor<[4,64],f32> } // ----- // CHECK-LABEL: func.func @torch.aten.reciprocal( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[?,?,?],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?,?],f32> -> tensor // CHECK: %[[VAL_2:.*]] = "chlo.constant_like"(%[[VAL_1]]) {value = 1.000000e+00 : f32} : (tensor) -> tensor // CHECK: %[[VAL_3:.*]] = mhlo.divide %[[VAL_2]], %[[VAL_1]] : tensor // CHECK: %[[VAL_4:.*]] = torch_c.from_builtin_tensor %[[VAL_3]] : tensor -> !torch.vtensor<[?,?,?],f32> // CHECK: return %[[VAL_4]] : !torch.vtensor<[?,?,?],f32> func.func @torch.aten.reciprocal(%arg0: !torch.vtensor<[?,?,?],f32>) -> !torch.vtensor<[?,?,?],f32> { %0 = torch.aten.reciprocal %arg0 : !torch.vtensor<[?,?,?],f32> -> !torch.vtensor<[?,?,?],f32> return %0 : !torch.vtensor<[?,?,?],f32> } // ----- // CHECK-LABEL: func.func @torch.aten.transpose$basic( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[4,3],f32>) -> !torch.vtensor<[3,4],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[4,3],f32> -> tensor<4x3xf32> // CHECK: %[[VAL_2:.*]] = torch.constant.int 0 // CHECK: %[[VAL_3:.*]] = torch.constant.int 1 // CHECK: %[[VAL_4:.*]] = "mhlo.transpose"(%[[VAL_1]]) {permutation = dense<[1, 0]> : tensor<2xi64>} : (tensor<4x3xf32>) -> tensor<3x4xf32> // CHECK: %[[VAL_5:.*]] = torch_c.from_builtin_tensor %[[VAL_4]] : tensor<3x4xf32> -> !torch.vtensor<[3,4],f32> // CHECK: return %[[VAL_5]] : !torch.vtensor<[3,4],f32> func.func @torch.aten.transpose$basic(%arg0: !torch.vtensor<[4,3],f32>) -> !torch.vtensor<[3,4],f32> { %int0 = torch.constant.int 0 %int1 = torch.constant.int 1 %0 = torch.aten.transpose.int %arg0, %int0, %int1 : !torch.vtensor<[4,3],f32>, !torch.int, !torch.int -> !torch.vtensor<[3,4],f32> return %0 : !torch.vtensor<[3,4],f32> } // ----- // CHECK-LABEL: func.func @torch.aten.broadcast_to$dynamic_implicit( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[8,4,?],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %int-1 = torch.constant.int -1 // CHECK: %int4 = torch.constant.int 4 // CHECK: %int8 = torch.constant.int 8 // CHECK: %[[VAL_2:.*]] = torch.prim.ListConstruct %int8, %int4, %int-1 : (!torch.int, !torch.int, !torch.int) -> !torch.list // CHECK: %[[VAL_3:.*]] = torch_c.to_i64 %int8 // CHECK: %[[VAL_4:.*]] = arith.index_cast %[[VAL_3:.*]] : i64 to index // CHECK: %[[VAL_5:.*]] = torch_c.to_i64 %int4 // CHECK: %[[VAL_6:.*]] = arith.index_cast %[[VAL_5]] : i64 to index // CHECK: %[[VAL_7:.*]] = arith.constant 1 : index // CHECK: %[[VAL_8:.*]] = tensor.dim %[[VAL_1:.*]], %[[VAL_7]] : tensor // CHECK: %[[VAL_9:.*]] = tensor.from_elements %[[VAL_4]], %[[VAL_6]], %[[VAL_8]] : tensor<3xindex> // CHECK: %[[VAL_10:.*]] = "mhlo.dynamic_broadcast_in_dim"(%[[VAL_1]], %[[VAL_9]]) {broadcast_dimensions = dense<[1, 2]> : tensor<2xi64>} : (tensor, tensor<3xindex>) -> tensor<8x4x?xf32> // CHECK: %[[VAL_11:.*]] = torch_c.from_builtin_tensor %[[VAL_10]] : tensor<8x4x?xf32> -> !torch.vtensor<[8,4,?],f32> // CHECK: return %[[VAL_11]] : !torch.vtensor<[8,4,?],f32> func.func @torch.aten.broadcast_to$dynamic_implicit(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[8,4,?],f32> { %int-1 = torch.constant.int -1 %int4 = torch.constant.int 4 %int8 = torch.constant.int 8 %0 = torch.prim.ListConstruct %int8, %int4, %int-1 : (!torch.int, !torch.int, !torch.int) -> !torch.list %1 = torch.aten.broadcast_to %arg0, %0 : !torch.vtensor<[?,?],f32>, !torch.list -> !torch.vtensor<[8,4,?],f32> return %1 : !torch.vtensor<[8,4,?],f32> } // ----- // CHECK-LABEL: func.func @torch.aten.batch_norm$training( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,3,?,?],f32>) -> !torch.vtensor<[?,3,?,?],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,3,?,?],f32> -> tensor // CHECK: %[[VAL_2:.*]] = mhlo.constant dense<0.000000e+00> : tensor<3xf32> // CHECK: %[[VAL_3:.*]] = mhlo.constant dense<1.000000e+00> : tensor<3xf32> // CHECK: %true = torch.constant.bool true // CHECK: %float1.000000e-01 = torch.constant.float 1.000000e-01 // CHECK: %float1.000000e-05 = torch.constant.float 1.000000e-05 // CHECK: %[[VAL_4:.*]] = arith.constant 1 : index // CHECK: %[[VAL_5:.*]] = tensor.dim %[[VAL_1]], %[[VAL_4]] : tensor // CHECK: %[[VAL_6:.*]] = tensor.from_elements %[[VAL_5]] : tensor<1xindex> // CHECK: %[[VAL_7:.*]], %[[VAL_8:.*]], %[[VAL_9:.*]] = "mhlo.batch_norm_training"(%[[VAL_1]], %[[VAL_3]], %[[VAL_2]]) {epsilon = 9.99999974E-6 : f32, feature_index = 1 : i64} : (tensor, tensor<3xf32>, tensor<3xf32>) -> (tensor, tensor<3xf32>, tensor<3xf32>) // CHECK: %[[VAL_8:.*]] = torch_c.from_builtin_tensor %[[VAL_7]] : tensor -> !torch.vtensor<[?,3,?,?],f32> // CHECK: return %[[VAL_8]] : !torch.vtensor<[?,3,?,?],f32> func.func @torch.aten.batch_norm$training(%arg0: !torch.vtensor<[?,3,?,?],f32>) -> !torch.vtensor<[?,3,?,?],f32> { %0 = torch.vtensor.literal(dense<0.000000e+00> : tensor<3xf32>) : !torch.vtensor<[3],f32> %1 = torch.vtensor.literal(dense<1.000000e+00> : tensor<3xf32>) : !torch.vtensor<[3],f32> %true = torch.constant.bool true %float1.000000e-01 = torch.constant.float 1.000000e-01 %float1.000000e-05 = torch.constant.float 1.000000e-05 %2 = torch.aten.batch_norm %arg0, %1, %0, %0, %1, %true, %float1.000000e-01, %float1.000000e-05, %true : !torch.vtensor<[?,3,?,?],f32>, !torch.vtensor<[3],f32>, !torch.vtensor<[3],f32>, !torch.vtensor<[3],f32>, !torch.vtensor<[3],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,3,?,?],f32> return %2 : !torch.vtensor<[?,3,?,?],f32> } // ----- // CHECK-LABEL: func.func @torch.aten.batch_norm$inference( // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,3,?,?],f32>) -> !torch.vtensor<[?,3,?,?],f32> { // CHECK: %[[T0:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,3,?,?],f32> -> tensor // CHECK: %[[T1:.*]] = mhlo.constant dense<0.000000e+00> : tensor<3xf32> // CHECK: %[[T2:.*]] = mhlo.constant dense<1.000000e+00> : tensor<3xf32> // CHECK: %[[TRUE:.*]] = torch.constant.bool true // CHECK: %[[FALSE:.*]] = torch.constant.bool false // CHECK: %[[FLOAT1:.*]].000000e-01 = torch.constant.float 1.000000e-01 // CHECK: %[[FLOAT1:.*]].000000e-05 = torch.constant.float 1.000000e-05 // CHECK: %[[C1:.*]] = arith.constant 1 : index // CHECK: %[[T3:.*]] = tensor.dim %[[T0]], %[[C1]] : tensor // CHECK: %[[T4:.*]] = tensor.from_elements %[[T3]] : tensor<1xindex> // CHECK: %[[T5:.*]] = tensor.cast %[[T0]] : tensor to tensor // CHECK: %[[T6:.*]] = "mhlo.batch_norm_inference"(%[[T5]], %[[T2]], %[[T1]], %[[T1]], %[[T2]]) {epsilon = 9.99999974E-6 : f32, feature_index = 1 : i64} : (tensor, tensor<3xf32>, tensor<3xf32>, tensor<3xf32>, tensor<3xf32>) -> tensor // CHECK: %[[T7:.*]] = tensor.cast %[[T6]] : tensor to tensor // CHECK: %[[T8:.*]] = torch_c.from_builtin_tensor %[[T7]] : tensor -> !torch.vtensor<[?,3,?,?],f32> // CHECK: return %[[T8]] : !torch.vtensor<[?,3,?,?],f32> func.func @torch.aten.batch_norm$inference(%arg0: !torch.vtensor<[?,3,?,?],f32>) -> !torch.vtensor<[?,3,?,?],f32> { %0 = torch.vtensor.literal(dense<0.000000e+00> : tensor<3xf32>) : !torch.vtensor<[3],f32> %1 = torch.vtensor.literal(dense<1.000000e+00> : tensor<3xf32>) : !torch.vtensor<[3],f32> %true = torch.constant.bool true %false = torch.constant.bool false %float1.000000e-01 = torch.constant.float 1.000000e-01 %float1.000000e-05 = torch.constant.float 1.000000e-05 %2 = torch.aten.batch_norm %arg0, %1, %0, %0, %1, %false, %float1.000000e-01, %float1.000000e-05, %true : !torch.vtensor<[?,3,?,?],f32>, !torch.vtensor<[3],f32>, !torch.vtensor<[3],f32>, !torch.vtensor<[3],f32>, !torch.vtensor<[3],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,3,?,?],f32> return %2 : !torch.vtensor<[?,3,?,?],f32> } // ----- // CHECK-LABEL: func.func @torch.aten.batch_norm$no_bias_weight( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,3,?,?],f32>) -> !torch.vtensor<[?,3,?,?],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,3,?,?],f32> -> tensor // CHECK: %none = torch.constant.none // CHECK: %[[VAL_2:.*]] = mhlo.constant dense<0.000000e+00> : tensor<3xf32> // CHECK: %[[VAL_3:.*]] = mhlo.constant dense<1.000000e+00> : tensor<3xf32> // CHECK: %true = torch.constant.bool true // CHECK: %float1.000000e-01 = torch.constant.float 1.000000e-01 // CHECK: %float1.000000e-05 = torch.constant.float 1.000000e-05 // CHECK: %[[VAL_4:.*]] = arith.constant 1 : index // CHECK: %[[VAL_5:.*]] = tensor.dim %[[VAL_1]], %[[VAL_4]] : tensor // CHECK: %[[VAL_6:.*]] = tensor.from_elements %[[VAL_5]] : tensor<1xindex> // CHECK: %[[VAL_7:.*]] = mhlo.constant dense<1.000000e+00> : tensor // CHECK: %[[VAL_8:.*]] = "mhlo.dynamic_broadcast_in_dim"(%[[VAL_7]], %[[VAL_6]]) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor, tensor<1xindex>) -> tensor<3xf32> // CHECK: %[[VAL_9:.*]] = mhlo.constant dense<0.000000e+00> : tensor // CHECK: %[[VAL_10:.*]] = "mhlo.dynamic_broadcast_in_dim"(%[[VAL_9]], %[[VAL_6]]) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor, tensor<1xindex>) -> tensor<3xf32> // CHECK: %[[VAL_11:.*]], %[[VAL_12:.*]], %[[VAL_13:.*]] = "mhlo.batch_norm_training"(%[[VAL_1]], %[[VAL_8]], %[[VAL_10]]) {epsilon = 9.99999974E-6 : f32, feature_index = 1 : i64} : (tensor, tensor<3xf32>, tensor<3xf32>) -> (tensor, tensor<3xf32>, tensor<3xf32>) // CHECK: %[[VAL_14:.*]] = torch_c.from_builtin_tensor %[[VAL_11]] : tensor -> !torch.vtensor<[?,3,?,?],f32> // CHECK: return %[[VAL_14]] : !torch.vtensor<[?,3,?,?],f32> func.func @torch.aten.batch_norm$no_bias_weight(%arg0: !torch.vtensor<[?,3,?,?],f32>) -> !torch.vtensor<[?,3,?,?],f32> { %none = torch.constant.none %0 = torch.vtensor.literal(dense<0.000000e+00> : tensor<3xf32>) : !torch.vtensor<[3],f32> %1 = torch.vtensor.literal(dense<1.000000e+00> : tensor<3xf32>) : !torch.vtensor<[3],f32> %true = torch.constant.bool true %float1.000000e-01 = torch.constant.float 1.000000e-01 %float1.000000e-05 = torch.constant.float 1.000000e-05 %2 = torch.aten.batch_norm %arg0, %none, %none, %0, %1, %true, %float1.000000e-01, %float1.000000e-05, %true : !torch.vtensor<[?,3,?,?],f32>, !torch.none, !torch.none, !torch.vtensor<[3],f32>, !torch.vtensor<[3],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[?,3,?,?],f32> return %2 : !torch.vtensor<[?,3,?,?],f32> } // CHECK-LABEL: func @torch.aten.native_layer_norm( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[3,7,4,5],f32>) -> !torch.vtensor<[3,7,4,5],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[3,7,4,5],f32> -> tensor<3x7x4x5xf32> // CHECK: %[[VAL_2:.*]] = mhlo.constant dense<0.000000e+00> : tensor<4x5xf32> // CHECK: %[[VAL_3:.*]] = mhlo.constant dense<1.000000e+00> : tensor<4x5xf32> // CHECK: %int4 = torch.constant.int 4 // CHECK: %int5 = torch.constant.int 5 // CHECK: %float1.000000e-05 = torch.constant.float 1.000000e-05 // CHECK: %true = torch.constant.bool true // CHECK: %[[VAL_4:.*]] = torch.prim.ListConstruct %int4, %int5 : (!torch.int, !torch.int) -> !torch.list // CHECK: %[[VAL_5:.*]] = mhlo.constant dense<[1, 21, 20]> : tensor<3xi64> // CHECK: %[[VAL_6:.*]] = mhlo.dynamic_reshape %[[VAL_1]], %[[VAL_5]] : (tensor<3x7x4x5xf32>, tensor<3xi64>) -> tensor<1x21x20xf32> // CHECK: %[[VAL_7:.*]] = mhlo.constant dense<1.000000e+00> : tensor<21xf32> // CHECK: %[[VAL_8:.*]] = mhlo.constant dense<0.000000e+00> : tensor<21xf32> // CHECK: %[[VAL_9:.*]], %[[VAL_10:.*]], %[[VAL_11:.*]] = "mhlo.batch_norm_training"(%[[VAL_6]], %[[VAL_7]], %[[VAL_8]]) {epsilon = 9.99999974E-6 : f32, feature_index = 1 : i64} : (tensor<1x21x20xf32>, tensor<21xf32>, tensor<21xf32>) -> (tensor<1x21x20xf32>, tensor<21xf32>, tensor<21xf32>) // CHECK: %[[VAL_12:.*]] = mhlo.constant dense<[3, 7, 4, 5]> : tensor<4xi64> // CHECK: %[[VAL_13:.*]] = mhlo.dynamic_reshape %[[VAL_9]], %[[VAL_12]] : (tensor<1x21x20xf32>, tensor<4xi64>) -> tensor<3x7x4x5xf32> // CHECK: %[[VAL_14:.*]] = mhlo.constant dense<[3, 7, 1, 1]> : tensor<4xi64> // CHECK: %[[VAL_15:.*]] = mhlo.dynamic_reshape %[[VAL_10]], %[[VAL_14]] : (tensor<21xf32>, tensor<4xi64>) -> tensor<3x7x1x1xf32> // CHECK: %[[VAL_16:.*]] = mhlo.constant dense<[3, 7, 1, 1]> : tensor<4xi64> // CHECK: %[[VAL_17:.*]] = mhlo.dynamic_reshape %[[VAL_11]], %[[VAL_16]] : (tensor<21xf32>, tensor<4xi64>) -> tensor<3x7x1x1xf32> // CHECK: %[[VAL_18:.*]] = "mhlo.broadcast_in_dim"(%[[VAL_3]]) {broadcast_dimensions = dense<[2, 3]> : tensor<2xi64>} : (tensor<4x5xf32>) -> tensor<3x7x4x5xf32> // CHECK: %[[VAL_19:.*]] = "mhlo.broadcast_in_dim"(%[[VAL_2]]) {broadcast_dimensions = dense<[2, 3]> : tensor<2xi64>} : (tensor<4x5xf32>) -> tensor<3x7x4x5xf32> // CHECK: %[[VAL_20:.*]] = mhlo.multiply %[[VAL_13]], %[[VAL_18]] : tensor<3x7x4x5xf32> // CHECK: %[[VAL_21:.*]] = mhlo.add %[[VAL_20]], %[[VAL_19]] : tensor<3x7x4x5xf32> // CHECK: %[[VAL_22:.*]] = torch_c.from_builtin_tensor %[[VAL_21:.*]] : tensor<3x7x4x5xf32> -> !torch.vtensor<[3,7,4,5],f32> // CHECK: return %[[VAL_22]] : !torch.vtensor<[3,7,4,5],f32> func.func @torch.aten.native_layer_norm(%arg0: !torch.vtensor<[3,7,4,5],f32>) -> !torch.vtensor<[3,7,4,5],f32> { %0 = torch.vtensor.literal(dense<0.000000e+00> : tensor<4x5xf32>) : !torch.vtensor<[4,5],f32> %1 = torch.vtensor.literal(dense<1.000000e+00> : tensor<4x5xf32>) : !torch.vtensor<[4,5],f32> %int4 = torch.constant.int 4 %int5 = torch.constant.int 5 %float1.000000e-05 = torch.constant.float 1.000000e-05 %true = torch.constant.bool true %2 = torch.prim.ListConstruct %int4, %int5 : (!torch.int, !torch.int) -> !torch.list %result0, %result1, %result2 = torch.aten.native_layer_norm %arg0, %2, %1, %0, %float1.000000e-05 : !torch.vtensor<[3,7,4,5],f32>, !torch.list, !torch.vtensor<[4,5],f32>, !torch.vtensor<[4,5],f32>, !torch.float -> !torch.vtensor<[3,7,4,5],f32>, !torch.vtensor<[3,7,1,1],f32>, !torch.vtensor<[3,7,1,1],f32> return %result0 : !torch.vtensor<[3,7,4,5],f32> } // ----- // CHECK-LABEL: func.func @torch.aten.cat$convert( // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?],f32>, %[[ARG1:.*]]: !torch.vtensor<[?,?],si32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[INT0:.*]] = torch.constant.int 0 // CHECK: %[[T0:.*]] = torch.prim.ListConstruct %[[ARG0]], %[[ARG1]] : (!torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],si32>) -> !torch.list // CHECK: %[[T1:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[T2:.*]] = torch_c.to_builtin_tensor %[[ARG1]] : !torch.vtensor<[?,?],si32> -> tensor // CHECK: %[[T3:.*]] = mhlo.convert %[[T2]] : (tensor) -> tensor // CHECK: %[[T4:.*]] = "mhlo.concatenate"(%[[T1]], %[[T3]]) {dimension = 0 : i64} : (tensor, tensor) -> tensor // CHECK: %[[T5:.*]] = torch_c.from_builtin_tensor %[[T4]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[T5]] : !torch.vtensor<[?,?],f32> func.func @torch.aten.cat$convert(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.vtensor<[?,?],si32>) -> !torch.vtensor<[?,?],f32> { %int0 = torch.constant.int 0 %0 = torch.prim.ListConstruct %arg0, %arg1 : (!torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],si32>) -> !torch.list %1 = torch.aten.cat %0, %int0 : !torch.list, !torch.int -> !torch.vtensor<[?,?],f32> return %1 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func.func @torch.aten.cat( // CHECK-SAME: %[[ARG_0:.*]]: !torch.vtensor<[?,?],f32>, // CHECK-SAME: %[[ARG_1:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %int0 = torch.constant.int 0 // CHECK: %[[VAL_0:.*]] = torch.prim.ListConstruct %[[ARG_0]], %[[ARG_1]] : (!torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32>) -> !torch.list // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[ARG_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_2:.*]] = torch_c.to_builtin_tensor %[[ARG_1]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_3:.*]] = "mhlo.concatenate"(%[[VAL_1]], %[[VAL_2]]) {dimension = 0 : i64} : (tensor, tensor) -> tensor // CHECK: %[[VAL_4:.*]] = torch_c.from_builtin_tensor %[[VAL_3]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[VAL_4]] : !torch.vtensor<[?,?],f32> func.func @torch.aten.cat(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %int0 = torch.constant.int 0 %0 = torch.prim.ListConstruct %arg0, %arg1 : (!torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32>) -> !torch.list %1 = torch.aten.cat %0, %int0 : !torch.list, !torch.int -> !torch.vtensor<[?,?],f32> return %1 : !torch.vtensor<[?,?],f32> }