//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // Also available under a BSD-style license. See LICENSE. // //===----------------------------------------------------------------------===// #include "PassDetail.h" #include "mlir/IR/BuiltinDialect.h" #include "mlir/Transforms/DialectConversion.h" #include "torch-mlir/Dialect/Torch/IR/TorchDialect.h" #include "torch-mlir/Dialect/Torch/IR/TorchOps.h" #include "torch-mlir/Dialect/Torch/Transforms/Passes.h" #include "torch-mlir/Dialect/Torch/Utils/Utils.h" #include "llvm/ADT/StringExtras.h" using namespace mlir; using namespace mlir::torch; using namespace mlir::torch::Torch; using namespace mlir::torch::torch_upstream; // For ScalarType and type // Helper funtion to get rank of `Base tensor type`. // -1 is returned if the tensorRank can't be determined. static int getTensorRank(Value tensor) { int tensorRank = -1; BaseTensorType tensorType = tensor.getType().cast(); if (tensorType.hasSizes()) { ArrayRef tensorShape = tensorType.getSizes(); tensorRank = tensorShape.size(); } return tensorRank; } // Helper function to compute the return type of the reduction function. // `dim` specifies the dimension to reduce and `keepDim` preserves the rank of // the input tensor. static Type computeReductionType(PatternRewriter &rewriter, Operation *op, Value input, Value dim, bool keepDim) { BaseTensorType tensorType = input.getType().cast(); SmallVector sizes; int64_t dimInt; if (tensorType.hasSizes()) { ArrayRef inputShape = tensorType.getSizes(); int64_t inputRank = inputShape.size(); if (matchPattern(dim, m_TorchConstantInt(&dimInt))) { dimInt = toPositiveDim(dimInt, inputRank); if (!isValidDim(dimInt, inputRank)) { (void)rewriter.notifyMatchFailure(op, "dim is not a valid dim"); return nullptr; } sizes.append(inputShape.begin(), inputShape.end()); // The dimension to be reduced is set to 1 when `keepDim` is true else it // is removed. if (keepDim) sizes[dimInt] = 1; else sizes.erase(sizes.begin() + dimInt - 1); } else { unsigned reducedRank = keepDim ? inputRank : inputRank - 1; sizes.resize(reducedRank, kUnknownSize); } } Type resultType = tensorType.getWithSizesAndDtype( sizes.size() == 0 ? Optional>() : llvm::makeArrayRef(sizes), tensorType.getDtype()); return resultType; } // Reduction function to calculate sum along given `dim`. static Value createSumAlongDimension(PatternRewriter &rewriter, Location loc, Operation *op, Value input, Value dim, bool keepDim) { Value dimList = rewriter.create( loc, Torch::ListType::get(dim.getType()), dim); Value keepDimCst = rewriter.create(loc, keepDim); Value dtype = rewriter.create(loc); Type resultType = computeReductionType(rewriter, op, input, dim, keepDim); if (!resultType) return nullptr; return rewriter.create(loc, resultType, input, dimList, keepDimCst, dtype); } // Redunction function to calculate max along given `dim`. static Value createMaxAlongDimension(PatternRewriter &rewriter, Location loc, Operation *op, Value input, Value dim, bool keepDim) { Value keepDimCst = rewriter.create(loc, keepDim); BaseTensorType valueType = computeReductionType(rewriter, op, input, dim, keepDim) .cast(); if (!valueType) return nullptr; BaseTensorType indexType = valueType .getWithSizesAndDtype( !valueType.hasSizes() ? Optional>() : llvm::makeArrayRef(valueType.getSizes()), IntegerType::get(op->getContext(), 64, IntegerType::Signed)) .cast(); return rewriter .create(loc, valueType, indexType, input, dim, keepDimCst) .values(); } // Helper for creating `aten::sub_tensor_op`. static Value createTensorSub(PatternRewriter &rewriter, Location loc, Type tensorType, Value lhs, Value rhs) { Value alpha = rewriter.create(loc, rewriter.getF64FloatAttr(1)); Value sub = rewriter.create(loc, tensorType, lhs, rhs, alpha); return sub; } static Value getDtypeIntValueForType(PatternRewriter &rewriter, Location loc, Type dtype) { int intType = (int)getScalarTypeForType(dtype); return rewriter.create(loc, rewriter.getI64IntegerAttr(intType)); } // Helper to convert a tensor to a specific scalar type. static Value convertTensorToDtype(PatternRewriter &rewriter, Location loc, Value input, Type dtype) { BaseTensorType origType = input.getType().cast(); Type newType = origType.getWithSizesAndDtype(origType.getSizes(), dtype); // `convertIntVal` contains the corresponding integer for the dtype which is used // by the aten.to.dtype op. Value convertIntVal = getDtypeIntValueForType(rewriter, loc, dtype); Value falseVal = rewriter.create(loc, false); Value noneVal = rewriter.create(loc); Value converted = rewriter.create( loc, newType, input, convertIntVal, falseVal, falseVal, noneVal); return converted; } // Helper to create a tensor filled with the given scalar. Scalar would be // converted the to the element type of the given tensor type. static Value createInitTensor(PatternRewriter &rewriter, Location loc, Type resultType, Value scalar, Value sizeList) { BaseTensorType tensorType = resultType.cast(); Value noneVal = rewriter.create(loc); Value emptyTensor = rewriter.create( loc, tensorType, sizeList, /*dtype=*/noneVal, /*layout=*/noneVal, /*device=*/noneVal, /*pin_memory=*/noneVal, /*memory_format=*/noneVal); return rewriter.create(loc, resultType, emptyTensor, scalar); } // Helper to create a rank0 tensor filled with the given scalar. Scalar would be // converted the to the element type of the given tensor type. static Value createRank0Tensor(PatternRewriter &rewriter, Location loc, BaseTensorType inputType, Value scalar) { SmallVector sizes; Type rank0TensorTy = inputType.getWithSizesAndDtype( makeArrayRef(sizes), inputType.getOptionalDtype()); Value dimList = rewriter.create( loc, Torch::ListType::get(Torch::IntType::get(inputType.getContext())), ValueRange{}); return createInitTensor(rewriter, loc, rank0TensorTy, scalar, dimList); } // Share code between `softmax_backward` and `log_softmax_backward` ops. // Returns x - y * sum(z, dim). static Value createSoftmaxBackwardCommonKernel(PatternRewriter &rewriter, Location loc, Operation *op, Type tensorType, Value x, Value y, Value z, Value dim) { Value sum = createSumAlongDimension(rewriter, loc, op, z, dim, /*keepDim=*/true); if (!sum) return nullptr; auto broadcastSizeType = Torch::ListType::get(Torch::IntType::get(op->getContext())); Value broadcastSize = rewriter.create(loc, broadcastSizeType, z); Value sumBroadcast = rewriter.create(loc, tensorType, sum, broadcastSize); Value temp = rewriter.create(loc, tensorType, y, sumBroadcast); Value sub = createTensorSub(rewriter, loc, tensorType, x, temp); return sub; } namespace { class DecomposeAtenSizeOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenSizeOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value self = op.self(); MLIRContext *context = op.getContext(); int64_t rank = getTensorRank(self); if (rank < 0) return rewriter.notifyMatchFailure(op, "Unimplemented: unranked tensor"); SmallVector sizes; for (int i = 0; i < rank; i++) { Value dim = rewriter.create( loc, rewriter.getI64IntegerAttr(i)); sizes.push_back(rewriter.create(loc, self, dim)); } Value sizeList = rewriter.create( loc, Torch::ListType::get(Torch::IntType::get(context)), sizes); rewriter.replaceOp(op, sizeList); return success(); } }; } // namespace namespace { class DecomposeAtenSelectIntOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenSelectIntOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value start = op.index(); Value dim = op.dim(); Value self = op.self(); Value one = rewriter.create(loc, rewriter.getI64IntegerAttr(1)); Value startPlusOne = rewriter.create(loc, one.getType(), start, one); Value slice = rewriter.create( loc, computeReductionType(rewriter, op, self, dim, /*keepDim=*/true), op.self(), dim, start, startPlusOne, /*step=*/one); // `aten.slice.tensor` doesn't squeeze the dim even when it's size 1 after // slicing, while `aten.select.int` does. rewriter.replaceOpWithNewOp(op, op.getResult().getType(), slice, op.dim()); return success(); } }; } // namespace namespace { class DecomposeAtenReshapeOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenReshapeOp op, PatternRewriter &rewriter) const override { Value input = op.self(); // TODO: Handle non value tensor type operands. if (!input.getType().isa()) { return rewriter.notifyMatchFailure( op, "unimplemented: only value tensor type operands are supported"); } rewriter.replaceOpWithNewOp(op, op.getType(), input, op.shape()); return success(); } }; } // namespace // Calculates the softmax function on the given `input` tensor. Softmax(x) = // exp(x)/sum(exp(x)). // To avoid overflow we use the following decomposition rule: // x_max = max(input, dim, keepdim = True) // unnorm = aten.exp(input - x_max) // softmax = unnorm / sum(unnorm, dim, keepdim = True) template static Value getSoftmaxResult(OpTy op, Type resultType, PatternRewriter &rewriter) { Location loc = op.getLoc(); Value dim = op.dim(); Value self = op.self(); Value xMax = createMaxAlongDimension(rewriter, loc, op, self, dim, /*keepDim=*/true); if (!xMax) return nullptr; Value unNormalized = createTensorSub(rewriter, loc, resultType, self, xMax); Value unNormalizedExp = rewriter.create(loc, resultType, unNormalized); Value sum = createSumAlongDimension(rewriter, loc, op, unNormalizedExp, dim, /*keepDim=*/true); if (!sum) return nullptr; return rewriter.create(loc, resultType, unNormalizedExp, sum); } // Decompose softmax into: exp(x) / sum(exp(x)) namespace { class DecomposeAtenSoftmaxIntOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenSoftmaxIntOp op, PatternRewriter &rewriter) const override { Value self = op.self(); if (!op.dtype().getType().isa()) return rewriter.notifyMatchFailure( op, "Unimplemented non-None dtype for softmax"); BaseTensorType tensorType = self.getType().cast(); if (!tensorType.hasDtype() || !tensorType.getDtype().isa()) return rewriter.notifyMatchFailure(op, "Only support floating type"); Value result = getSoftmaxResult(op, tensorType, rewriter); if (!result) return failure(); rewriter.replaceOpWithNewOp(op, op.getType(), result); return success(); } }; } // namespace namespace { class DecomposeAten_SoftmaxOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(Aten_SoftmaxOp op, PatternRewriter &rewriter) const override { Value self = op.self(); BaseTensorType tensorType = self.getType().cast(); if (!tensorType.hasDtype() || !tensorType.getDtype().isa()) return rewriter.notifyMatchFailure(op, "Only support floating type"); bool halfToFloat; if (!matchPattern(op.half_to_float(), m_TorchConstantBool(&halfToFloat))) return rewriter.notifyMatchFailure( op, "Expected a boolean value for half_to_float"); // Currently, setting `halfToFloat` is not supported as the E2E testing for // the same is not present on CPU. if (halfToFloat) return rewriter.notifyMatchFailure( op, "halfToFloat is currently not supported."); Value result = getSoftmaxResult(op, tensorType, rewriter); if (!result) return op.emitError("failed to get softmax result"); rewriter.replaceOpWithNewOp(op, op.getType(), result); return success(); } }; } // namespace // Aten_SoftmaxBackwardDataOp(gradOutput, output, dim) => // newGrad = gradOutput * output // result = newGrad - output * sum(newGrad, dim)) // // Refer to // https://github.com/pytorch/pytorch/blob/15fecc4c830a3907fde4b44c9962dc4144da50a4/torch/csrc/jit/codegen/cuda/ops/normalization.cpp#L31 namespace { class DecomposeAten_SoftmaxBackwardDataOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(Aten_SoftmaxBackwardDataOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value gradOutput = op.grad_output(); Value output = op.output(); Value dim = op.dim(); BaseTensorType tensorType = gradOutput.getType().cast(); if (!tensorType.hasDtype() || !tensorType.getDtype().isa()) return rewriter.notifyMatchFailure(op, "Only support floating type"); Value newGrad = rewriter.create(loc, tensorType, gradOutput, output); Value result = createSoftmaxBackwardCommonKernel( rewriter, loc, op, tensorType, newGrad, output, newGrad, dim); if (!result) return rewriter.notifyMatchFailure( op, "nullptr returned by createSoftmaxBackwardCommonKernel function."); rewriter.replaceOp(op, result); return success(); } }; } // namespace // AtenTanhBackwardOp(gradOutput, output) => // result = gradOutput * (1 - output^2) // To get away from broadcasts the above formula is expanded i.e., // result = gradOutput - (gradOutput * output^2) namespace { class DecomposeAtenTanhBackwardOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenTanhBackwardOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value gradOutput = op.grad_output(); // `output` is the value flowing out from tanh. Hence, tanh(x) = output. // Since, dTanh(x) = (1 - tanh(x)^2) hence, dOutput = (1 - output^2). Value output = op.output(); BaseTensorType tensorType = gradOutput.getType().cast(); if (!tensorType.hasDtype() || !tensorType.getDtype().isa()) return rewriter.notifyMatchFailure(op, "Only support floating type"); Value tanhSquare = rewriter.create(loc, tensorType, output, output); Value gradMulTanhSquare = rewriter.create( loc, tensorType, tanhSquare, gradOutput); Value newGrad = createTensorSub(rewriter, loc, tensorType, gradOutput, gradMulTanhSquare); rewriter.replaceOp(op, newGrad); return success(); } }; } // namespace // Aten_LogSoftmaxBackwardDataOp(gradOutput, output, dim) => // result = gradOutput - (exp(output) * sum(gradOutput, dim)) namespace { class DecomposeAten_LogSoftmaxBackwardDataOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(Aten_LogSoftmaxBackwardDataOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value gradOutput = op.grad_output(); Value output = op.output(); Value dim = op.dim(); BaseTensorType tensorType = gradOutput.getType().cast(); if (!tensorType.hasDtype() || !tensorType.getDtype().isa()) return rewriter.notifyMatchFailure(op, "Only support floating type"); Value expOut = rewriter.create(loc, tensorType, output); Value result = createSoftmaxBackwardCommonKernel( rewriter, loc, op, tensorType, gradOutput, expOut, gradOutput, dim); if (!result) return rewriter.notifyMatchFailure( op, "nullptr returned by createSoftmaxBackwardCommonKernel function."); rewriter.replaceOp(op, result); return success(); } }; } // namespace // Decompose `AtenArgMaxOp` into `AtenMaxDimOp`. namespace { class DecomposeAtenArgMaxOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenArgmaxOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); Value dim = op.dim(); Value keepDim = op.keepdim(); Value result = op.result(); BaseTensorType inputType = input.getType().cast(); BaseTensorType indicesTensorType = result.getType().cast(); if (!indicesTensorType.hasSizes()) return failure(); BaseTensorType valueTensorType = inputType .getWithSizesAndDtype(indicesTensorType.getSizes(), inputType.getDtype()) .cast(); // If the dim type is `NoneType` i.e. reduce along all the dimensions. // `AtenMaxDimOp` doesn't support dim as `NoneType` so first the input // tensor is flattened to 1d tensor and then the reduction happens on the // 0th dimension. if (dim.getType().isa()) { BaseTensorType flattenType = inputType.getWithSizesAndDtype({kUnknownSize}, inputType.getDtype()) .cast(); dim = rewriter.create(loc, rewriter.getI64IntegerAttr(0)); Value end = rewriter.create( loc, rewriter.getI64IntegerAttr(getTensorRank(input) - 1)); input = rewriter.create(loc, flattenType, input, dim, end); } Value maxResult = rewriter .create(loc, valueTensorType, indicesTensorType, input, dim, keepDim) .indices(); rewriter.replaceOp(op, maxResult); return success(); } }; } // namespace // To avoid overflow we use the following decomposition rule: // x_max = aten.max(x, dim, keepdim=True)[0] // shifted = x - x_max // shifted_logsumexp = aten.log(aten.sum(aten.exp(shifted), dim, keepdim=True)) // log_softmax = shifted - shifted_logsumexp template static Value getLogSoftmaxResult(OpTy op, PatternRewriter &rewriter) { Location loc = op.getLoc(); Value dim = op.dim(); Value self = op.self(); BaseTensorType tensorType = self.getType().cast(); Value xMax = createMaxAlongDimension(rewriter, loc, op, self, dim, /*keepDim=*/true); if (!xMax) return nullptr; Value shifted = createTensorSub(rewriter, loc, tensorType, self, xMax); Value shiftedExp = rewriter.create(loc, tensorType, shifted); Value shiftedSumExp = createSumAlongDimension(rewriter, loc, op, shiftedExp, dim, /*keepDim=*/true); if (!shiftedSumExp) return nullptr; Value shiftedLogSumExp = rewriter.create(loc, shiftedSumExp.getType(), shiftedSumExp); Value result = createTensorSub(rewriter, loc, op.getType(), shifted, shiftedLogSumExp); return result; } namespace { class DecomposeAtenLogSoftmaxIntOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenLogSoftmaxIntOp op, PatternRewriter &rewriter) const override { Value self = op.self(); if (!op.dtype().getType().isa()) return rewriter.notifyMatchFailure( op, "Unimplemented non-None dtype for log_softmax"); BaseTensorType tensorType = self.getType().cast(); if (!tensorType.hasDtype() || !tensorType.getDtype().isa()) return rewriter.notifyMatchFailure(op, "Only support floating type"); Value logSoftmax = getLogSoftmaxResult(op, rewriter); if (!logSoftmax) return rewriter.notifyMatchFailure( op, "getLogSoftmaxResult function returned nullptr"); rewriter.replaceOp(op, logSoftmax); return success(); } }; } // namespace namespace { class DecomposeAten_LogSoftmaxOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(Aten_LogSoftmaxOp op, PatternRewriter &rewriter) const override { bool halfToFloat; if (!matchPattern(op.half_to_float(), m_TorchConstantBool(&halfToFloat))) return rewriter.notifyMatchFailure( op, "Expected a boolean value for half_to_float"); // Currently, setting `halfToFloat` is not supported as the E2E testing for // the same is not present on CPU. if (halfToFloat) return rewriter.notifyMatchFailure( op, "halfToFloat is currently not supported."); Value _logSoftmax = getLogSoftmaxResult(op, rewriter); if (!_logSoftmax) return rewriter.notifyMatchFailure( op, "getLogSoftmaxResult function returned nullptr"); rewriter.replaceOp(op, _logSoftmax); return success(); } }; } // namespace // Decompose aten.matmul into: aten.mm and aten.bmm according to ranks. namespace { class DecomposeAtenMatmulOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenMatmulOp op, PatternRewriter &rewriter) const override { Value lhs = op.self(); Value rhs = op.other(); int lhsRank = getTensorRank(lhs); int rhsRank = getTensorRank(rhs); // If both lhs and rhs ranks are 2 then map it to `aten.mm` op. if (lhsRank == 2 && rhsRank == 2) rewriter.replaceOpWithNewOp(op, op.getType(), lhs, rhs); // If both lhs and rhs ranks are 3 then map it to `aten.bmm` op. if (lhsRank == 3 && rhsRank == 3) rewriter.replaceOpWithNewOp(op, op.getType(), lhs, rhs); return success(); } }; } // namespace // ReLU6(x) = min(max(0, x), 6) = min(Relu(x), 6) static Value getRelu6Results(PatternRewriter &rewriter, Location loc, Value input) { BaseTensorType inputType = input.getType().cast(); Value relu = rewriter.create(loc, inputType, input); Value cst6 = rewriter.create(loc, rewriter.getI64IntegerAttr(6)); Value sixTensor = createRank0Tensor(rewriter, loc, inputType, cst6); Value relu6Out = rewriter.create(loc, inputType, relu, sixTensor); return relu6Out; } // Hardswish(x) = x * Relu6(x+3)/6 namespace { class DecomposeAtenHardswishOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenHardswishOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); Type inputType = input.getType(); Value constantOne = rewriter.create( loc, rewriter.getI64IntegerAttr(1)); Value constantThree = rewriter.create( loc, rewriter.getI64IntegerAttr(3)); Value constantSix = rewriter.create( loc, rewriter.getI64IntegerAttr(6)); Value inputPlusThree = rewriter.create( loc, inputType, input, constantThree, /*alpha=*/constantOne); Value relu6 = getRelu6Results(rewriter, loc, inputPlusThree); Value divTensor = rewriter.create(loc, inputType, relu6, constantSix); Value mulTensor = rewriter.create(loc, inputType, divTensor, input); rewriter.replaceOp(op, mulTensor); return success(); } }; } // namespace namespace { class DecomposeAtenTOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenTOp op, PatternRewriter &rewriter) const override { Value lhs = op.self(); int lhsRank = getTensorRank(lhs); auto loc = op.getLoc(); if (lhsRank > 2 || lhsRank < 0) { std::string errorMessage = "t() expects a tensor with <=2 dimensions, but self is " + std::to_string(lhsRank) + "D"; return rewriter.notifyMatchFailure(op, errorMessage.c_str()); } else if (lhsRank < 2) rewriter.replaceOp(op, lhs); else { Value zero = rewriter.create(loc, rewriter.getI64IntegerAttr(0)); Value one = rewriter.create(loc, rewriter.getI64IntegerAttr(1)); rewriter.replaceOpWithNewOp(op, op.getType(), lhs, zero, one); } return success(); } }; } // namespace // Decompose aten.expand into aten.broadcast_to op. namespace { class DecomposeAtenExpandOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenExpandOp op, PatternRewriter &rewriter) const override { bool implicit = false; if (!matchPattern(op.implicit(), m_TorchConstantBool(&implicit)) || implicit) { return rewriter.notifyMatchFailure( op, "unimplemented: requires implicit to be false"); } rewriter.replaceOpWithNewOp(op, op.getType(), op.self(), op.size()); return success(); } }; } // namespace // Decompose aten.addmm into aten.mm and aten.add.Tensor op. namespace { class DecomposeAtenAddmmOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenAddmmOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); Value mat1 = op.mat1(); Value mat2 = op.mat2(); // The operands `mat1`, `mat2` to aten.addmm must be of rank 2. if (getTensorRank(mat1) != 2 || getTensorRank(mat2) != 2) { return rewriter.notifyMatchFailure( op, "expected mat1, mat2 operands to aten.addmm to be rank 2"); } // TODO: Handle integer type operands. if (!input.getType() .cast() .getDtype() .isa()) { return rewriter.notifyMatchFailure( op, "unimplemented: non-floating point dtype"); } // matrix multiplication: matmul = mat1 @ mat2 Value matmul = rewriter.create(loc, op.getType(), mat1, mat2); // scaledInput = self * beta Value scaledInput = rewriter.create(loc, input.getType(), input, op.beta()); // result = scaledInput + alpha * matmul rewriter.replaceOpWithNewOp(op, op.getType(), scaledInput, matmul, op.alpha()); return success(); } }; } // namespace // Decompose aten.mean into: sum(x)/div(numTensorElements). namespace { class DecomposeAtenMeanOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenMeanOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); Value output = op.result(); BaseTensorType outputTensorType = output.getType().cast(); Value sum = rewriter.create(loc, outputTensorType, input, op.dtype()); Value numTensorElements = rewriter.create(loc, input); rewriter.replaceOpWithNewOp(op, outputTensorType, sum, numTensorElements); return success(); } }; } // namespace namespace { class DecomposeAtenSquareOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenSquareOp op, PatternRewriter &rewriter) const override { Value self = op.self(); rewriter.replaceOpWithNewOp(op, op.getType(), self, self); return success(); } }; } // namespace // Silu(x) = sigmoid(x) * x namespace { class DecomposeAtenSiluOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenSiluOp op, PatternRewriter &rewriter) const override { Value self = op.self(); Value sigmoid = rewriter.create(op.getLoc(), op.getType(), self); rewriter.replaceOpWithNewOp(op, op.getType(), sigmoid, self); return success(); } }; } // namespace // Decompose aten.var into: sum(square(x - mean))/(numTensorElements-1) // for unbiased and mean(square(x - mean)) for biased case. namespace { class DecomposeAtenVarOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenVarOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value self = op.self(); BaseTensorType inputTensorTy = self.getType().cast(); if (!inputTensorTy.hasDtype() || !inputTensorTy.getDtype().isa()) { return rewriter.notifyMatchFailure(op, "Only aten.var support floating type"); } BaseTensorType rank0FloatTensorTy = op.getType().cast(); assert(rank0FloatTensorTy.getSizes().size() == 0 && "Op should have rank 0 tensor type"); bool unbiased; if (!matchPattern(op.unbiased(), m_TorchConstantBool(&unbiased))) { return rewriter.notifyMatchFailure( op, "Only support constant unbiased for aten.var"); } Value dtype = rewriter.create(loc); Value mean = rewriter.create(loc, rank0FloatTensorTy, self, dtype); Value subMean = createTensorSub(rewriter, loc, inputTensorTy, self, mean); Value square = rewriter.create(loc, inputTensorTy, subMean); Value var; if (unbiased) { // Bessel’s correction is used. Divide the square sum by // numTensorElements-1. Value squareSum = rewriter.create(loc, rank0FloatTensorTy, square, dtype); Value numTensorElements = rewriter.create(loc, square); Value cst1 = rewriter.create( loc, rewriter.getI64IntegerAttr(1)); Value numTensorElementsSub1 = rewriter.create(loc, numTensorElements, cst1); var = rewriter.replaceOpWithNewOp( op, rank0FloatTensorTy, squareSum, numTensorElementsSub1); } else { var = rewriter.replaceOpWithNewOp(op, rank0FloatTensorTy, square, dtype); } return success(); } }; } // namespace // Decompose aten.std to sqrt(var(x)) namespace { class DecomposeAtenStdOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenStdOp op, PatternRewriter &rewriter) const override { Value self = op.self(); BaseTensorType inputTensorTy = self.getType().cast(); if (!inputTensorTy.hasDtype() || !inputTensorTy.getDtype().isa()) { return rewriter.notifyMatchFailure(op, "Only aten.std support floating type"); } Value var = rewriter.create(op->getLoc(), op.getType(), op.self(), op.unbiased()); rewriter.replaceOpWithNewOp(op, op.getType(), var); return success(); } }; } // namespace // Hardsigmoid(x) = max(0, min(1, (x+3)/6)) namespace { class DecomposeAtenHardsigmoidOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenHardsigmoidOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); BaseTensorType inputType = input.getType().cast(); // outputTensor = (input + 3) / 6. Value constantOne = rewriter.create( loc, rewriter.getI64IntegerAttr(1)); Value constantThree = rewriter.create( loc, rewriter.getI64IntegerAttr(3)); Value constantSix = rewriter.create( loc, rewriter.getI64IntegerAttr(6)); Value inputPlusThree = rewriter.create( loc, inputType, input, constantThree, /*alpha=*/constantOne); Value outputTensor = rewriter.create( loc, inputType, inputPlusThree, constantSix); // result = max(0, min(1, (input+3)/6)) Value constantZero = rewriter.create( loc, rewriter.getI64IntegerAttr(0)); Value oneTensor = createRank0Tensor(rewriter, loc, inputType, constantOne); Value minResult = rewriter.create(loc, inputType, oneTensor, outputTensor); Value zeroTensor = createRank0Tensor(rewriter, loc, inputType, constantZero); rewriter.replaceOpWithNewOp(op, op.getType(), zeroTensor, minResult); return success(); } }; } // namespace namespace { class DecomposeAtenHardtanhOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenHardtanhOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); BaseTensorType inputType = input.getType().cast(); // result = min(maxVal, max(minVal, x)) Value minVal = createRank0Tensor(rewriter, loc, inputType, op.min_val()); Value maxResult = rewriter.create(loc, inputType, input, minVal); Value maxVal = createRank0Tensor(rewriter, loc, inputType, op.max_val()); rewriter.replaceOpWithNewOp(op, op.getType(), maxVal, maxResult); return success(); } }; } // namespace // Returns a tensor with bernoulli(p) distribution. // Decompose aten.bernoulli(x, p) to aten.gtTensor(aten.uniform(x), p). static LogicalResult decomposeBernoulliLikeOp(PatternRewriter &rewriter, Operation *op, Location loc, Value input, double p, Value &result) { BaseTensorType inputType = input.getType().cast(); if (!inputType.hasSizes() || !inputType.hasDtype()) { return rewriter.notifyMatchFailure( op, "Can't decomposeBernoulliLikeOp without sizes or dtype"); } BaseTensorType boolType = inputType .getWithSizesAndDtype( inputType.getSizes(), IntegerType::get(op->getContext(), 1, IntegerType::Signless)) .cast(); Value prob = rewriter.create(loc, rewriter.getF64FloatAttr(p)); Value lb = rewriter.create(loc, rewriter.getF64FloatAttr(0.0)); Value ub = rewriter.create(loc, rewriter.getF64FloatAttr(1.0)); Value noneVal = rewriter.create(loc); // Create a uniform random op with low and high set to lb and ub respectively. Value uniformRandom = rewriter.create( loc, inputType, input, lb, ub, noneVal); Value gtValue = rewriter.create(loc, boolType, uniformRandom, prob); // Since `gtValue` will be a boolean tensor convert it back to the original // type. result = convertTensorToDtype(rewriter, loc, gtValue, inputType.getDtype()); return success(); } namespace { class DecomposeAtenBernoulliOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenBernoulliOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value self = op.self(); Value generator = op.generator(); if (!generator.getType().isa()) return rewriter.notifyMatchFailure( op, "The generator has to ben None because only global default " "generator is supported"); Value result; if (failed(decomposeBernoulliLikeOp(rewriter, op, loc, self, /*p=*/0.5, result))) return failure(); rewriter.replaceOp(op, result); return success(); } }; } // namespace namespace { class DecomposePseudoAtenBernoulliFloatOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(PseudoAtenBernoulliFloatOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value self = op.self(); Value generator = op.generator(); double p; if (!matchPattern(op.p(), m_TorchConstantFloat(&p))) return rewriter.notifyMatchFailure(op, "p should be constant float"); if (!generator.getType().isa()) return rewriter.notifyMatchFailure( op, "The generator has to ben None because only global default " "generator is supported"); Value result; if (failed(decomposeBernoulliLikeOp(rewriter, op, loc, self, p, result))) return failure(); rewriter.replaceOp(op, result); return success(); } }; } // namespace namespace { template class DecomposeAtenAddCLikeOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); Value tensor1 = op.tensor1(); Value tensor2 = op.tensor2(); Value value = op.value(); Value product = rewriter.create(loc, op.getType(), tensor1, tensor2); rewriter.replaceOpWithNewOp(op, op.getType(), input, product, value); return success(); } }; class DecomposeAtenLayerNormOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenLayerNormOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); auto input = op.input().getType().cast(); if (!input.hasSizes()) return rewriter.notifyMatchFailure( op, "input tensor should have known sizes."); int64_t inputRank = input.getSizes().size(); Value normalizedShape = op.normalized_shape(); SmallVector normalizedShapeSizesTorchInt; getListConstructElements(normalizedShape, normalizedShapeSizesTorchInt); std::vector meanVarSizes; for (int i = normalizedShapeSizesTorchInt.size(); i < inputRank; i++) meanVarSizes.push_back(input.getSizes()[i]); auto meanVarType = input.getWithSizesAndDtype( llvm::makeArrayRef(meanVarSizes), input.getDtype()); auto nativeLayerNorm = rewriter.create( loc, op.getType(), meanVarType, meanVarType, op.input(), op.normalized_shape(), op.weight(), op.bias(), op.eps()); rewriter.replaceOp(op, nativeLayerNorm.getResult(0)); return success(); } }; } // namespace namespace { // Decompose `aten.empty_like` op into `aten.size` and `aten.empty` ops. class DecomposeAtenEmptyLikeOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenEmptyLikeOp op, PatternRewriter &rewriter) const override { auto sizeListType = Torch::ListType::get(Torch::IntType::get(op.getContext())); Value sizeList = rewriter.create(op.getLoc(), sizeListType, op.self()); rewriter.replaceOpWithNewOp( op, op.getType(), sizeList, op.dtype(), op.layout(), op.device(), op.pin_memory(), op.memory_format()); return success(); } }; } // namespace namespace { // The `aten.arange` op is converted to `aten.arange.start_step` op. class DecomposeAtenArangeOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenArangeOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); // The AtenArangeOp doesn't have a start and step value. Therefore we set // them as default values 0 and 1, respectively. Value start, step; start = rewriter.create( loc, rewriter.getI64IntegerAttr(0)); step = rewriter.create(loc, rewriter.getI64IntegerAttr(1)); rewriter.replaceOpWithNewOp( op, op.getType(), start, op.end(), step, op.dtype(), op.layout(), op.device(), op.pin_memory()); return success(); } }; } // namespace namespace { // The `aten.arange.start` op is converted to `aten.arange.start_step` op. class DecomposeAtenArangeStartOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenArangeStartOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); // The AtenArangeStartOp doesn't have a step value. Therefore we set it as // default value 1. Value step; step = rewriter.create(loc, rewriter.getI64IntegerAttr(1)); rewriter.replaceOpWithNewOp( op, op.getType(), op.start(), op.end(), step, op.dtype(), op.layout(), op.device(), op.pin_memory()); return success(); } }; } // namespace namespace { // Decompose constant tensor allocation like ops. template class DecomposeConstantTensorAllocLikeOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); // Allocate a memory block. Value initTensor = rewriter.create( loc, op.getType(), op.self(), op.dtype(), op.layout(), op.device(), op.pin_memory(), op.memory_format()); Value constVal = rewriter.create( loc, rewriter.getI64IntegerAttr(fillVal)); // Initialize the allocated memory block with `fillVal`. rewriter.replaceOpWithNewOp( op, initTensor.getType(), initTensor, constVal); return success(); } }; } // namespace namespace { class DecomposeAtenNativeBatchNormOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenNativeBatchNormOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); MLIRContext *context = op.getContext(); Value input = op.input(); Value weight = op.weight(); Value bias = op.bias(); Value runningMean = op.running_mean(); Value runningVar = op.running_var(); Value eps = op.eps(); // TODO: Add support for `training` mode. bool training = false; if (!matchPattern(op.training(), m_TorchConstantBool(&training)) || training) return rewriter.notifyMatchFailure( op, "unimplemented: training mode is not supported"); // Rank of the input tensor must be greater than or equal to 2. The shape of // the `input` is supposed to be (N, C, D?, H?, W?). int64_t inputRank = getTensorRank(input); if (inputRank < 2) return rewriter.notifyMatchFailure( op, "input must have rank greater than or equal to 2"); // In the inference mode, the `runningMean` and `runningVar` must not be // None. if (runningMean.getType().isa() || runningVar.getType().isa()) return rewriter.notifyMatchFailure( op, "running stats must not be None in inference mode"); // Rank of `runningMean` and `runningVar` must be exactly 1. if (getTensorRank(runningMean) != 1 || getTensorRank(runningVar) != 1) return rewriter.notifyMatchFailure( op, "expected running_mean and running_var to be rank 1"); Value zero = rewriter.create(loc, rewriter.getI64IntegerAttr(0)); Value one = rewriter.create(loc, rewriter.getI64IntegerAttr(1)); Value numFeatures = rewriter.create(loc, input, /*dim=*/one); // TODO: Add Runtime Asserts to check the shape of weight, bias, // running_mean and running_var to be (numFeatures). // The `runningMean` and `runningVar` must be reshaped to (1, C, 1?, 1?, 1?) // to make it broadcast-compatible with (N, C, D?, H?, W?). // 1. runningMean = runningMean.view(1, C, 1?, 1?, 1?) // 2. runningVar = runningVar.view(1, C, 1?, 1?, 1?) SmallVector runningStatsShape(inputRank, one); runningStatsShape[1] = numFeatures; Value runningStatsSizeList = rewriter.create( loc, ListType::get(IntType::get(context)), runningStatsShape); SmallVector runningStatsShapeInt(inputRank, 1); runningStatsShapeInt[1] = ShapedType::kDynamicSize; Type dtype = input.getType().cast().getDtype(); Type reshapeType = ValueTensorType::get( context, llvm::makeArrayRef(runningStatsShapeInt), dtype); runningMean = rewriter.create(loc, reshapeType, runningMean, runningStatsSizeList); runningVar = rewriter.create(loc, reshapeType, runningVar, runningStatsSizeList); // normalizedInput = (input - runningMean) / (sqrt(runningVar + eps)). Value inputSubMean = rewriter.create( loc, input.getType(), input, runningMean, /*alpha=*/one); Value varEps = rewriter.create( loc, runningVar.getType(), runningVar, eps, /*alpha=*/one); Value invStd = rewriter.create(loc, varEps.getType(), varEps); Value normalizedInput = rewriter.create( loc, inputSubMean.getType(), inputSubMean, invStd); // The `weight` and `bias` must be reshaped to (1, C, 1?, 1?, 1?) to make it // broadcast-compatible with (N, C, D?, H?, W?). // 1. weight = weight.view(1, C, 1?, 1?, 1?) // 2. bias = bias.view(1, C, 1?, 1?, 1?) // 3. output = normalizedInput * weight + bias Value batchNormOutput = normalizedInput; if (!weight.getType().isa()) { // Rank of `weight` must be exactly 1. if (getTensorRank(weight) != 1) return rewriter.notifyMatchFailure(op, "expected weight to be rank 1"); weight = rewriter.create(loc, reshapeType, weight, runningStatsSizeList); batchNormOutput = rewriter.create( loc, batchNormOutput.getType(), batchNormOutput, weight); } if (!bias.getType().isa()) { // Rank of `bias` must be exactly 1. if (getTensorRank(bias) != 1) return rewriter.notifyMatchFailure(op, "expected bias to be rank 1"); bias = rewriter.create(loc, reshapeType, bias, runningStatsSizeList); batchNormOutput = rewriter.create( loc, batchNormOutput.getType(), batchNormOutput, bias, /*alpha=*/one); } // The `mean` and `invstd` outputs are empty tensors in inference mode. Value zeroList = rewriter.create( loc, Torch::ListType::get(zero.getType()), zero); Value none = rewriter.create(loc); Value emptyMeanTensor = rewriter.create( loc, op.getType(1), zeroList, /*dtype=*/none, /*layout=*/none, /*device=*/none, /*pin_memory=*/none, /*memory_format=*/none); Value emptyInvStdTensor = rewriter.create( loc, op.getType(2), zeroList, /*dtype=*/none, /*layout=*/none, /*device=*/none, /*pin_memory=*/none, /*memory_format=*/none); rewriter.replaceOp(op, {batchNormOutput, emptyMeanTensor, emptyInvStdTensor}); return success(); } }; } // namespace // Decompse `Aten_UnsafeViewOp` into `AtenViewOp`. _unsafe_view() differs from // view() in that the returned tensor isn't treated as a view for the purposes // of automatic differentiation. It's only safe to use if the `self` tensor is // temporary. For example, the viewed tensor here (a + b) is discarded // immediately after viewing: // // res = _unsafe_view(a + b, size); // // This is a hack because in-place operations on tensors treated like views // can be much more expensive than the same operations on non-view tensors. // Refer to // https://github.com/pytorch/pytorch/blob/364055b2771ecf9b54f1d67a8bf44bb5496476d4/aten/src/ATen/native/TensorShape.cpp#L2072 namespace { class DecomposeAten_UnsafeViewOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(Aten_UnsafeViewOp op, PatternRewriter &rewriter) const override { rewriter.replaceOpWithNewOp(op, op.getType(), op.self(), op.size()); return success(); } }; } // namespace namespace { // Decompose constant tensor like ops. template class DecomposeConstantTensorNewLikeOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const override { rewriter.replaceOpWithNewOp(op, op.getType(), op.size(), op.dtype(), op.layout(), op.device(), op.pin_memory()); return success(); } }; } // namespace namespace { class DecomposeComplexOpsPass : public DecomposeComplexOpsBase { void runOnOperation() override { MLIRContext *context = &getContext(); RewritePatternSet patterns(context); ConversionTarget target(*context); target.addLegalDialect(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add>( context); target.addIllegalOp(); patterns.add>( context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); patterns.add(context); target.addIllegalOp(); target.addDynamicallyLegalOp([](AtenMatmulOp op) { int lhsRank = getTensorRank(op.self()); int rhsRank = getTensorRank(op.other()); // Make aten.matmul legal if the following condition is satisfied. return (lhsRank != 2 || rhsRank != 2) && (lhsRank != 3 || rhsRank != 3); }); patterns.add>( context); target.addIllegalOp(); patterns.add>( context); target.addIllegalOp(); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add>( context); target.addIllegalOp(); patterns.add>( context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); if (failed(applyPartialConversion(getOperation(), target, std::move(patterns)))) { return signalPassFailure(); } } }; } // namespace std::unique_ptr> mlir::torch::Torch::createDecomposeComplexOpsPass() { return std::make_unique(); }