// RUN: torch-mlir-opt -torch-reduce-op-variants %s | FileCheck %s // CHECK-LABEL: func @convert_to_value_semantic_tensors( // CHECK-SAME: %[[ARG:.*]]: !torch.tensor<[],f32>) -> !torch.tensor<[],f32> { // CHECK: %[[OPERAND_TENSOR:.*]] = torch.copy.to_vtensor %[[ARG]] : !torch.vtensor<[],f32> // CHECK: %[[RESULT_TENSOR:.*]] = torch.aten.tanh %[[OPERAND_TENSOR]] : !torch.vtensor<[],f32> -> !torch.vtensor<[],f32> // CHECK: %[[RET:.*]] = torch.copy.to_tensor %[[RESULT_TENSOR]] : !torch.tensor<[],f32> // CHECK: return %[[RET]] : !torch.tensor<[],f32> func @convert_to_value_semantic_tensors(%arg0: !torch.tensor<[],f32>) -> !torch.tensor<[],f32> { %0 = torch.aten.tanh %arg0 : !torch.tensor<[],f32> -> !torch.tensor<[],f32> return %0 : !torch.tensor<[],f32> } // CHECK-LABEL: func @convert_to_value_semantic_tensors_list( // CHECK-SAME: %[[VT0:.*]]: !torch.vtensor, %[[VT1:.*]]: !torch.vtensor, // CHECK-SAME: %[[VT2:.*]]: !torch.vtensor) -> !torch.tensor { // CHECK: %[[T0:.*]] = torch.copy.to_tensor %[[VT0]] : !torch.tensor // CHECK: %[[T1:.*]] = torch.copy.to_tensor %[[VT1]] : !torch.tensor // CHECK: %[[T2:.*]] = torch.copy.to_tensor %[[VT2]] : !torch.tensor // CHECK: %[[DIM:.*]] = torch.constant.int 1 // CHECK: %[[LIST_ORIG:.*]] = torch.prim.ListConstruct %[[T0]], %[[T1]], %[[T2]] : // CHECK-SAME: (!torch.tensor, !torch.tensor, !torch.tensor) -> !torch.list // CHECK: %[[VT0_COPY:.*]] = torch.copy.to_vtensor %[[T0]] : !torch.vtensor // CHECK: %[[VT1_COPY:.*]] = torch.copy.to_vtensor %[[T1]] : !torch.vtensor // CHECK: %[[VT2_COPY:.*]] = torch.copy.to_vtensor %[[T2]] : !torch.vtensor // CHECK: %[[LIST_NEW:.*]] = torch.prim.ListConstruct // CHECK-SAME: %[[VT0_COPY]], %[[VT1_COPY]], %[[VT2_COPY]] : // CHECK-SAME: (!torch.vtensor, !torch.vtensor, !torch.vtensor) -> !torch.list // CHECK: %[[VRET:.*]] = torch.aten.cat %[[LIST_NEW]], %[[DIM]] : // CHECK-SAME: !torch.list, !torch.int -> !torch.vtensor // CHECK: %[[RET:.*]] = torch.copy.to_tensor %[[VRET]] : !torch.tensor // CHECK: return %[[RET]] : !torch.tensor func @convert_to_value_semantic_tensors_list(%vt0: !torch.vtensor, %vt1: !torch.vtensor, %vt2: !torch.vtensor) -> !torch.tensor { %t0 = torch.copy.to_tensor %vt0 : !torch.tensor %t1 = torch.copy.to_tensor %vt1 : !torch.tensor %t2 = torch.copy.to_tensor %vt2 : !torch.tensor %int1 = torch.constant.int 1 %list = torch.prim.ListConstruct %t0, %t1, %t2 : (!torch.tensor, !torch.tensor, !torch.tensor) -> !torch.list %ret = torch.aten.cat %list, %int1 : !torch.list, !torch.int -> !torch.tensor return %ret : !torch.tensor } // CHECK-LABEL: func @convert_to_value_semantic_tensors_optional( // CHECK-SAME: %[[INPUT:.*]]: !torch.tensor, %[[FLOAT_TENSOR:.*]]: !torch.tensor<[4],f32>, // CHECK-SAME: %[[TRAINING:.*]]: !torch.bool, %[[CUDNN_ENABLE:.*]]: !torch.bool, // CHECK-SAME: %[[FLOAT:.*]]: !torch.float) -> !torch.tensor { // CHECK: %[[NONE:.*]] = torch.constant.none // CHECK: %[[FLOAT_TENSOR_OPTIONAL:.*]] = torch.derefine %[[FLOAT_TENSOR]] : // CHECK-SAME: !torch.tensor<[4],f32> to !torch.optional // CHECK: %[[BIAS_NONE_OPTIONAL:.*]] = torch.derefine %[[NONE]] : !torch.none to !torch.optional // CHECK: %[[VINPUT:.*]] = torch.copy.to_vtensor %[[INPUT]] : !torch.vtensor // CHECK: %[[FLOAT_VTENSOR:.*]] = torch.copy.to_vtensor %[[FLOAT_TENSOR]] : !torch.vtensor<[4],f32> // CHECK: %[[WEIGHTS_TENSOR_OPTIONAL:.*]] = torch.derefine %[[FLOAT_VTENSOR]] : // CHECK-SAME: !torch.vtensor<[4],f32> to !torch.optional> // CHECK: %[[FLOAT_VTENSOR:.*]] = torch.copy.to_vtensor %[[FLOAT_TENSOR]] : !torch.vtensor<[4],f32> // CHECK: %[[MEAN_VTENSOR_OPTIONAL:.*]] = torch.derefine %[[FLOAT_VTENSOR]] : // CHECK-SAME: !torch.vtensor<[4],f32> to !torch.optional> // CHECK: %[[FLOAT_VTENSOR:.*]] = torch.copy.to_vtensor %[[FLOAT_TENSOR]] : !torch.vtensor<[4],f32> // CHECK: %[[VAR_VTENSOR_OPTIONAL:.*]] = torch.derefine %[[FLOAT_VTENSOR]] : // CHECK-SAME: !torch.vtensor<[4],f32> to !torch.optional> // CHECK: %[[VRET:.*]] = torch.aten.batch_norm %[[VINPUT]], %[[WEIGHTS_TENSOR_OPTIONAL]], // CHECK-SAME: %[[BIAS_NONE_OPTIONAL]], %[[MEAN_VTENSOR_OPTIONAL]], %[[VAR_VTENSOR_OPTIONAL]], // CHECK-SAME: %[[TRAINING]], %[[FLOAT]], %[[FLOAT]], %[[CUDNN_ENABLE]] : // CHECK-SAME: !torch.vtensor, !torch.optional>, !torch.optional, // CHECK-SAME: !torch.optional>, !torch.optional>, // CHECK-SAME: !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor // CHECK: %[[RET:.*]] = torch.copy.to_tensor %[[VRET]] : !torch.tensor // CHECK: return %[[RET]] : !torch.tensor // CHECK: } func @convert_to_value_semantic_tensors_optional(%t: !torch.tensor, %ft: !torch.tensor<[4],f32>, %training: !torch.bool, %cudnn_enable: !torch.bool, %f : !torch.float) -> !torch.tensor { %none = torch.constant.none %tensor_optional = torch.derefine %ft: !torch.tensor<[4],f32> to !torch.optional %none_optional = torch.derefine %none : !torch.none to !torch.optional %ret = torch.aten.batch_norm %t, %tensor_optional, %none_optional, %tensor_optional, %tensor_optional, %training, %f, %f, %cudnn_enable: !torch.tensor, !torch.optional, !torch.optional, !torch.optional, !torch.optional, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.tensor return %ret: !torch.tensor } // CHECK-LABEL: func @reduce_trailing_underscore_inplace_variant( // CHECK-SAME: %[[ARG0:.*]]: !torch.tensor<[2,2],f32>, // CHECK-SAME: %[[ARG1:.*]]: !torch.tensor<[2,2],f32>) -> (!torch.tensor<[2,2],f32>, !torch.tensor<[2,2],f32>) { // CHECK: %[[C1:.*]] = torch.constant.int 1 // CHECK: %[[TENSOR0:.*]] = torch.copy.to_vtensor %[[ARG0]] : !torch.vtensor<[2,2],f32> // CHECK: %[[TENSOR1:.*]] = torch.copy.to_vtensor %[[ARG1]] : !torch.vtensor<[2,2],f32> // CHECK: %[[TENSOR_RESULT:.*]] = torch.aten.add.Tensor %[[TENSOR0]], %[[TENSOR1]], %[[C1]] : !torch.vtensor<[2,2],f32>, !torch.vtensor<[2,2],f32>, !torch.int -> !torch.vtensor<[2,2],f32> // Note: This somewhat redundant conversion back and forth // (which is cleaned up by canonicalization) is an artifact of two patterns // being applied in sequence. // CHECK: %[[ARRAY_RESULT:.*]] = torch.copy.to_tensor %[[TENSOR_RESULT]] : !torch.tensor<[2,2],f32> // CHECK: %[[TENSOR_AGAIN:.*]] = torch.copy.to_vtensor %[[ARRAY_RESULT]] : !torch.vtensor<[2,2],f32> // CHECK: torch.overwrite.tensor %[[TENSOR_AGAIN]] overwrites %[[ARG0]] : !torch.vtensor<[2,2],f32>, !torch.tensor<[2,2],f32> // CHECK: return %[[ARG0]], %[[ARG0]] : !torch.tensor<[2,2],f32>, !torch.tensor<[2,2],f32> func @reduce_trailing_underscore_inplace_variant(%arg0: !torch.tensor<[2,2],f32>, %arg1: !torch.tensor<[2,2],f32>) -> (!torch.tensor<[2,2],f32>, !torch.tensor<[2,2],f32>) { %c1 = torch.constant.int 1 %0 = torch.aten.add_.Tensor %arg0, %arg1, %c1 : !torch.tensor<[2,2],f32>, !torch.tensor<[2,2],f32>, !torch.int -> !torch.tensor<[2,2],f32> return %0, %arg0 : !torch.tensor<[2,2],f32>, !torch.tensor<[2,2],f32> } // CHECK-LABEL: func @torch.tensor.literal() -> !torch.tensor { // CHECK: %[[VTENSOR:.*]] = torch.vtensor.literal(dense<0.000000e+00> : tensor<7xf32>) : !torch.vtensor<[7],f32> // CHECK: %[[SIZES_ERASED:.*]] = torch.tensor_static_info_cast %[[VTENSOR]] : !torch.vtensor<[7],f32> to !torch.vtensor // CHECK: %[[TENSOR:.*]] = torch.copy.to_tensor %[[SIZES_ERASED]] : !torch.tensor // CHECK: return %[[TENSOR]] : !torch.tensor func @torch.tensor.literal() -> !torch.tensor { %0 = torch.tensor.literal(dense<0.0> : tensor<7xf32>) : !torch.tensor return %0 : !torch.tensor } // CHECK-LABEL: func @convert_to_value_semantic_tensors_optional_list( // CHECK-SAME: %[[SELF:.*]]: !torch.tensor<[5],f32>, // CHECK-SAME: %[[INDICES:.*]]: !torch.tensor<[2,3],si64>) -> !torch.tensor { // CHECK: %[[INDICES_OPTIONAL_LIST:.*]] = torch.prim.ListConstruct %[[INDICES]] : // CHECK-SAME: (!torch.tensor<[2,3],si64>) -> !torch.list>> // CHECK: %[[SELF_VTENSOR:.*]] = torch.copy.to_vtensor %[[SELF]] : !torch.vtensor<[5],f32> // CHECK: %[[INDICES_VTENSOR:.*]] = torch.copy.to_vtensor %[[INDICES]] : !torch.vtensor<[2,3],si64> // CHECK: %[[INDICES_LIST:.*]] = torch.prim.ListConstruct %[[INDICES_VTENSOR]] : (!torch.vtensor<[2,3],si64>) -> !torch.list> // CHECK: %[[VRET:.*]] = torch.aten.index.Tensor %[[SELF_VTENSOR]], %[[INDICES_LIST]] : !torch.vtensor<[5],f32>, !torch.list> -> !torch.vtensor // CHECK: %[[RET:.*]] = torch.copy.to_tensor %[[VRET]] : !torch.tensor // CHECK: return %[[RET]] : !torch.tensor func @convert_to_value_semantic_tensors_optional_list(%self: !torch.tensor<[5],f32>, %indices: !torch.tensor<[2,3],si64>) -> !torch.tensor { %tensor_optional_list = torch.prim.ListConstruct %indices : (!torch.tensor<[2,3],si64>) -> !torch.list>> %ret = torch.aten.index.Tensor %self, %tensor_optional_list : !torch.tensor<[5],f32>, !torch.list>> -> !torch.tensor return %ret : !torch.tensor } // CHECK-LABEL: func @torch.aten.uniform_( // CHECK-SAME: %[[T:.*]]: !torch.tensor, %[[MIN:.*]]: !torch.float, %[[MAX:.*]]: !torch.float, // CHECK-SAME: %[[GENERATOR:.*]]: !torch.none) -> !torch.tensor { // CHECK: %[[T_VTENSOR:.*]] = torch.copy.to_vtensor %[[T]] : !torch.vtensor // CHECK: %[[VRET:.*]] = torch.pseudo.aten.uniform %[[T_VTENSOR]], %[[MIN]], %[[MAX]], %[[GENERATOR]] : // CHECK-SAME: !torch.vtensor, !torch.float, !torch.float, !torch.none -> !torch.vtensor // CHECK: %[[RET:.*]] = torch.copy.to_tensor %[[VRET]] : !torch.tensor // CHECK: %[[COPY_VTENSOR:.*]] = torch.copy.to_vtensor %[[RET]] : !torch.vtensor // CHECK: torch.overwrite.tensor %[[COPY_VTENSOR]] overwrites %[[T]] : !torch.vtensor, !torch.tensor // CHECK: return %[[T]] : !torch.tensor func @torch.aten.uniform_(%t: !torch.tensor, %min: !torch.float, %max: !torch.float, %generator: !torch.none) -> !torch.tensor { %ret = torch.aten.uniform_ %t, %min, %max, %generator: !torch.tensor, !torch.float, !torch.float, !torch.none -> !torch.tensor return %ret : !torch.tensor }