//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // Also available under a BSD-style license. See LICENSE. // //===----------------------------------------------------------------------===// #include "PassDetail.h" #include "mlir/IR/BuiltinDialect.h" #include "mlir/Transforms/DialectConversion.h" #include "torch-mlir/Dialect/Torch/IR/TorchDialect.h" #include "torch-mlir/Dialect/Torch/IR/TorchOps.h" #include "torch-mlir/Dialect/Torch/IR/TorchTypes.h" #include "torch-mlir/Dialect/Torch/Transforms/Passes.h" #include "torch-mlir/Dialect/Torch/Utils/Utils.h" #include "llvm/ADT/StringExtras.h" using namespace mlir; using namespace mlir::torch; using namespace mlir::torch::Torch; // Helper function to check whether the `dtype` is None or Float type. static bool isNoneOrFloatDtype(MLIRContext *context, Value dtype) { if (dtype.getType().isa()) return true; int64_t dtypeInt; if (!matchPattern(dtype, m_TorchConstantInt(&dtypeInt))) return false; Type resDtype = getTypeForScalarType(context, (torch_upstream::ScalarType)dtypeInt); return resDtype.isa(); } // Helper function to compute the return type of the reduction function. // `dim` specifies the dimension to reduce and `keepDim` preserves the rank of // the input tensor. static Type computeReductionType(PatternRewriter &rewriter, Operation *op, Value input, Value dim, bool keepDim) { BaseTensorType tensorType = input.getType().cast(); SmallVector sizes; int64_t dimInt; if (tensorType.hasSizes()) { ArrayRef inputShape = tensorType.getSizes(); int64_t inputRank = inputShape.size(); if (matchPattern(dim, m_TorchConstantInt(&dimInt))) { dimInt = toPositiveDim(dimInt, inputRank); if (!isValidDim(dimInt, inputRank)) { (void)rewriter.notifyMatchFailure(op, "dim is not a valid dim"); return nullptr; } sizes.append(inputShape.begin(), inputShape.end()); // The dimension to be reduced is set to 1 when `keepDim` is true else it // is removed. if (keepDim) sizes[dimInt] = 1; else sizes.erase(sizes.begin() + dimInt - 1); } else { unsigned reducedRank = keepDim ? inputRank : inputRank - 1; sizes.resize(reducedRank, kUnknownSize); } } Type resultType = tensorType.getWithSizesAndDtype( sizes.size() == 0 ? Optional>() : llvm::makeArrayRef(sizes), tensorType.getDtype()); return resultType; } // Reduction function to calculate sum along given `dim`. static Value createSumAlongDimension(PatternRewriter &rewriter, Location loc, Operation *op, Value input, Value dim, bool keepDim) { Value dimList = rewriter.create( loc, Torch::ListType::get(dim.getType()), dim); Value keepDimCst = rewriter.create(loc, keepDim); Value dtype = rewriter.create(loc); Type resultType = computeReductionType(rewriter, op, input, dim, keepDim); if (!resultType) return nullptr; return rewriter.create(loc, resultType, input, dimList, keepDimCst, dtype); } // Redunction function to calculate max along given `dim`. static Value createMaxAlongDimension(PatternRewriter &rewriter, Location loc, Operation *op, Value input, Value dim, bool keepDim) { Value keepDimCst = rewriter.create(loc, keepDim); BaseTensorType valueType = computeReductionType(rewriter, op, input, dim, keepDim) .cast(); if (!valueType) return nullptr; BaseTensorType indexType = valueType .getWithSizesAndDtype( !valueType.hasSizes() ? Optional>() : llvm::makeArrayRef(valueType.getSizes()), IntegerType::get(op->getContext(), 64, IntegerType::Signed)) .cast(); return rewriter .create(loc, valueType, indexType, input, dim, keepDimCst) .values(); } // Helper for creating `aten::sub_tensor_op`. static Value createTensorSub(PatternRewriter &rewriter, Location loc, Type tensorType, Value lhs, Value rhs) { Value alpha = rewriter.create(loc, rewriter.getF64FloatAttr(1)); Value sub = rewriter.create(loc, tensorType, lhs, rhs, alpha); return sub; } // Helper to create a tensor filled with the given scalar. Scalar would be // converted the to the element type of the given tensor type. static Value createInitTensor(PatternRewriter &rewriter, Location loc, Type resultType, Value scalar, Value sizeList) { BaseTensorType tensorType = resultType.cast(); Value noneVal = rewriter.create(loc); Value emptyTensor = rewriter.create( loc, tensorType, sizeList, /*dtype=*/noneVal, /*layout=*/noneVal, /*device=*/noneVal, /*pin_memory=*/noneVal, /*memory_format=*/noneVal); return rewriter.create(loc, resultType, emptyTensor, scalar); } // Helper to create a rank 0 tensor filled with the given `scalar`. `scalar` // would be converted to the element type of the given `inputType`. static Value createRank0Tensor(PatternRewriter &rewriter, Location loc, BaseTensorType inputType, Value scalar) { SmallVector sizes; Type rank0TensorTy = inputType.getWithSizesAndDtype( makeArrayRef(sizes), inputType.getOptionalDtype()); Value dimList = rewriter.create( loc, Torch::ListType::get(Torch::IntType::get(inputType.getContext())), ValueRange{}); return createInitTensor(rewriter, loc, rank0TensorTy, scalar, dimList); } // Share code between `softmax_backward` and `log_softmax_backward` ops. // Returns x - y * sum(z, dim). static Value createSoftmaxBackwardCommonKernel(PatternRewriter &rewriter, Location loc, Operation *op, Type tensorType, Value x, Value y, Value z, Value dim) { Value sum = createSumAlongDimension(rewriter, loc, op, z, dim, /*keepDim=*/true); if (!sum) return nullptr; auto broadcastSizeType = Torch::ListType::get(Torch::IntType::get(op->getContext())); Value broadcastSize = rewriter.create(loc, broadcastSizeType, z); Value sumBroadcast = rewriter.create(loc, tensorType, sum, broadcastSize); Value temp = rewriter.create(loc, tensorType, y, sumBroadcast); Value sub = createTensorSub(rewriter, loc, tensorType, x, temp); return sub; } namespace { class DecomposeAtenSizeOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenSizeOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value self = op.self(); MLIRContext *context = op.getContext(); int64_t rank = getTensorRank(self); if (rank < 0) return rewriter.notifyMatchFailure(op, "Unimplemented: unranked tensor"); SmallVector sizes; for (int i = 0; i < rank; i++) { Value dim = rewriter.create( loc, rewriter.getI64IntegerAttr(i)); sizes.push_back(rewriter.create(loc, self, dim)); } Value sizeList = rewriter.create( loc, Torch::ListType::get(Torch::IntType::get(context)), sizes); rewriter.replaceOp(op, sizeList); return success(); } }; } // namespace namespace { class DecomposeAtenSelectIntOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenSelectIntOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value start = op.index(); Value dim = op.dim(); Value self = op.self(); Value one = rewriter.create(loc, rewriter.getI64IntegerAttr(1)); Value startPlusOne = rewriter.create(loc, one.getType(), start, one); Value slice = rewriter.create( loc, computeReductionType(rewriter, op, self, dim, /*keepDim=*/true), op.self(), dim, start, startPlusOne, /*step=*/one); // `aten.slice.tensor` doesn't squeeze the dim even when it's size 1 after // slicing, while `aten.select.int` does. rewriter.replaceOpWithNewOp(op, op.getResult().getType(), slice, op.dim()); return success(); } }; } // namespace namespace { class DecomposeAtenZeroFunctionalOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenZeroFunctionalOp op, PatternRewriter &rewriter) const override { Value zero = rewriter.create(op.getLoc(), rewriter.getI64IntegerAttr(0)); rewriter.replaceOpWithNewOp(op, op.getType(), op.self(), zero); return success(); } }; } // namespace namespace { class DecomposeAtenReshapeOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenReshapeOp op, PatternRewriter &rewriter) const override { Value input = op.self(); // TODO: Handle non value tensor type operands. if (!input.getType().isa()) { return rewriter.notifyMatchFailure( op, "unimplemented: only value tensor type operands are supported"); } rewriter.replaceOpWithNewOp(op, op.getType(), input, op.shape()); return success(); } }; } // namespace // Calculates the softmax function on the given `input` tensor. Softmax(x) = // exp(x)/sum(exp(x)). // To avoid overflow we use the following decomposition rule: // x_max = max(input, dim, keepdim = True) // unnorm = aten.exp(input - x_max) // softmax = unnorm / sum(unnorm, dim, keepdim = True) template static Value getSoftmaxResult(OpTy op, Type resultType, PatternRewriter &rewriter) { Location loc = op.getLoc(); Value dim = op.dim(); Value self = op.self(); Value xMax = createMaxAlongDimension(rewriter, loc, op, self, dim, /*keepDim=*/true); if (!xMax) return nullptr; Value unNormalized = createTensorSub(rewriter, loc, resultType, self, xMax); Value unNormalizedExp = rewriter.create(loc, resultType, unNormalized); Value sum = createSumAlongDimension(rewriter, loc, op, unNormalizedExp, dim, /*keepDim=*/true); if (!sum) return nullptr; return rewriter.create(loc, resultType, unNormalizedExp, sum); } // Decompose softmax into: exp(x) / sum(exp(x)) namespace { class DecomposeAtenSoftmaxIntOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenSoftmaxIntOp op, PatternRewriter &rewriter) const override { Value self = op.self(); if (!op.dtype().getType().isa()) return rewriter.notifyMatchFailure( op, "Unimplemented non-None dtype for softmax"); BaseTensorType tensorType = self.getType().cast(); if (!tensorType.hasDtype() || !tensorType.getDtype().isa()) return rewriter.notifyMatchFailure(op, "Only support floating type"); Value result = getSoftmaxResult(op, tensorType, rewriter); if (!result) return failure(); rewriter.replaceOpWithNewOp(op, op.getType(), result); return success(); } }; } // namespace namespace { class DecomposeAten_SoftmaxOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(Aten_SoftmaxOp op, PatternRewriter &rewriter) const override { Value self = op.self(); BaseTensorType tensorType = self.getType().cast(); if (!tensorType.hasDtype() || !tensorType.getDtype().isa()) return rewriter.notifyMatchFailure(op, "Only support floating type"); bool halfToFloat; if (!matchPattern(op.half_to_float(), m_TorchConstantBool(&halfToFloat))) return rewriter.notifyMatchFailure( op, "Expected a boolean value for half_to_float"); // Currently, setting `halfToFloat` is not supported as the E2E testing for // the same is not present on CPU. if (halfToFloat) return rewriter.notifyMatchFailure( op, "halfToFloat is currently not supported."); Value result = getSoftmaxResult(op, tensorType, rewriter); if (!result) return op.emitError("failed to get softmax result"); rewriter.replaceOpWithNewOp(op, op.getType(), result); return success(); } }; } // namespace // Aten_SoftmaxBackwardDataOp(gradOutput, output, dim) => // newGrad = gradOutput * output // result = newGrad - output * sum(newGrad, dim)) // // Refer to // https://github.com/pytorch/pytorch/blob/15fecc4c830a3907fde4b44c9962dc4144da50a4/torch/csrc/jit/codegen/cuda/ops/normalization.cpp#L31 namespace { class DecomposeAten_SoftmaxBackwardDataOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(Aten_SoftmaxBackwardDataOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value gradOutput = op.grad_output(); Value output = op.output(); Value dim = op.dim(); BaseTensorType tensorType = gradOutput.getType().cast(); if (!tensorType.hasDtype() || !tensorType.getDtype().isa()) return rewriter.notifyMatchFailure(op, "Only support floating type"); Value newGrad = rewriter.create(loc, tensorType, gradOutput, output); Value result = createSoftmaxBackwardCommonKernel( rewriter, loc, op, tensorType, newGrad, output, newGrad, dim); if (!result) return rewriter.notifyMatchFailure( op, "nullptr returned by createSoftmaxBackwardCommonKernel function."); rewriter.replaceOp(op, result); return success(); } }; } // namespace // AtenTanhBackwardOp(gradOutput, output) => // result = gradOutput * (1 - output^2) // To get away from broadcasts the above formula is expanded i.e., // result = gradOutput - (gradOutput * output^2) namespace { class DecomposeAtenTanhBackwardOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenTanhBackwardOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value gradOutput = op.grad_output(); // `output` is the value flowing out from tanh. Hence, tanh(x) = output. // Since, dTanh(x) = (1 - tanh(x)^2) hence, dOutput = (1 - output^2). Value output = op.output(); BaseTensorType tensorType = gradOutput.getType().cast(); if (!tensorType.hasDtype() || !tensorType.getDtype().isa()) return rewriter.notifyMatchFailure(op, "Only support floating type"); Value tanhSquare = rewriter.create(loc, tensorType, output, output); Value gradMulTanhSquare = rewriter.create( loc, tensorType, tanhSquare, gradOutput); Value newGrad = createTensorSub(rewriter, loc, tensorType, gradOutput, gradMulTanhSquare); rewriter.replaceOp(op, newGrad); return success(); } }; } // namespace // Aten_LogSoftmaxBackwardDataOp(gradOutput, output, dim) => // result = gradOutput - (exp(output) * sum(gradOutput, dim)) namespace { class DecomposeAten_LogSoftmaxBackwardDataOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(Aten_LogSoftmaxBackwardDataOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value gradOutput = op.grad_output(); Value output = op.output(); Value dim = op.dim(); BaseTensorType tensorType = gradOutput.getType().cast(); if (!tensorType.hasDtype() || !tensorType.getDtype().isa()) return rewriter.notifyMatchFailure(op, "Only support floating type"); Value expOut = rewriter.create(loc, tensorType, output); Value result = createSoftmaxBackwardCommonKernel( rewriter, loc, op, tensorType, gradOutput, expOut, gradOutput, dim); if (!result) return rewriter.notifyMatchFailure( op, "nullptr returned by createSoftmaxBackwardCommonKernel function."); rewriter.replaceOp(op, result); return success(); } }; } // namespace // Decompose `AtenArgMaxOp` into `AtenMaxDimOp`. namespace { class DecomposeAtenArgMaxOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenArgmaxOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); Value dim = op.dim(); Value keepDim = op.keepdim(); Value result = op.result(); BaseTensorType inputType = input.getType().cast(); BaseTensorType indicesTensorType = result.getType().cast(); if (!indicesTensorType.hasSizes()) return failure(); BaseTensorType valueTensorType = inputType .getWithSizesAndDtype(indicesTensorType.getSizes(), inputType.getDtype()) .cast(); // If the dim type is `NoneType` i.e. reduce along all the dimensions. // `AtenMaxDimOp` doesn't support dim as `NoneType` so first the input // tensor is flattened to 1d tensor and then the reduction happens on the // 0th dimension. if (dim.getType().isa()) { BaseTensorType flattenType = inputType.getWithSizesAndDtype({kUnknownSize}, inputType.getDtype()) .cast(); dim = rewriter.create(loc, rewriter.getI64IntegerAttr(0)); Value end = rewriter.create( loc, rewriter.getI64IntegerAttr(getTensorRank(input) - 1)); input = rewriter.create(loc, flattenType, input, dim, end); } Value maxResult = rewriter .create(loc, valueTensorType, indicesTensorType, input, dim, keepDim) .indices(); rewriter.replaceOp(op, maxResult); return success(); } }; } // namespace // To avoid overflow we use the following decomposition rule: // x_max = aten.max(x, dim, keepdim=True)[0] // shifted = x - x_max // shifted_logsumexp = aten.log(aten.sum(aten.exp(shifted), dim, keepdim=True)) // log_softmax = shifted - shifted_logsumexp template static Value getLogSoftmaxResult(OpTy op, PatternRewriter &rewriter) { Location loc = op.getLoc(); Value dim = op.dim(); Value self = op.self(); BaseTensorType tensorType = self.getType().cast(); Value xMax = createMaxAlongDimension(rewriter, loc, op, self, dim, /*keepDim=*/true); if (!xMax) return nullptr; Value shifted = createTensorSub(rewriter, loc, tensorType, self, xMax); Value shiftedExp = rewriter.create(loc, tensorType, shifted); Value shiftedSumExp = createSumAlongDimension(rewriter, loc, op, shiftedExp, dim, /*keepDim=*/true); if (!shiftedSumExp) return nullptr; Value shiftedLogSumExp = rewriter.create(loc, shiftedSumExp.getType(), shiftedSumExp); Value result = createTensorSub(rewriter, loc, op.getType(), shifted, shiftedLogSumExp); return result; } namespace { class DecomposeAtenLogSoftmaxIntOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenLogSoftmaxIntOp op, PatternRewriter &rewriter) const override { Value self = op.self(); if (!op.dtype().getType().isa()) return rewriter.notifyMatchFailure( op, "Unimplemented non-None dtype for log_softmax"); BaseTensorType tensorType = self.getType().cast(); if (!tensorType.hasDtype() || !tensorType.getDtype().isa()) return rewriter.notifyMatchFailure(op, "Only support floating type"); Value logSoftmax = getLogSoftmaxResult(op, rewriter); if (!logSoftmax) return rewriter.notifyMatchFailure( op, "getLogSoftmaxResult function returned nullptr"); rewriter.replaceOp(op, logSoftmax); return success(); } }; } // namespace namespace { class DecomposeAten_LogSoftmaxOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(Aten_LogSoftmaxOp op, PatternRewriter &rewriter) const override { bool halfToFloat; if (!matchPattern(op.half_to_float(), m_TorchConstantBool(&halfToFloat))) return rewriter.notifyMatchFailure( op, "Expected a boolean value for half_to_float"); // Currently, setting `halfToFloat` is not supported as the E2E testing for // the same is not present on CPU. if (halfToFloat) return rewriter.notifyMatchFailure( op, "halfToFloat is currently not supported."); Value _logSoftmax = getLogSoftmaxResult(op, rewriter); if (!_logSoftmax) return rewriter.notifyMatchFailure( op, "getLogSoftmaxResult function returned nullptr"); rewriter.replaceOp(op, _logSoftmax); return success(); } }; } // namespace // Decompose aten.matmul into: aten.mm and aten.bmm according to ranks. namespace { class DecomposeAtenMatmulOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenMatmulOp op, PatternRewriter &rewriter) const override { Value lhs = op.self(); Value rhs = op.other(); int lhsRank = getTensorRank(lhs); int rhsRank = getTensorRank(rhs); // If both lhs and rhs ranks are 2 then map it to `aten.mm` op. if (lhsRank == 2 && rhsRank == 2) rewriter.replaceOpWithNewOp(op, op.getType(), lhs, rhs); // If both lhs and rhs ranks are 3 then map it to `aten.bmm` op. if (lhsRank == 3 && rhsRank == 3) rewriter.replaceOpWithNewOp(op, op.getType(), lhs, rhs); return success(); } }; } // namespace // ReLU6(x) = min(max(0, x), 6) = min(Relu(x), 6) static Value getRelu6Results(PatternRewriter &rewriter, Location loc, Value input) { BaseTensorType inputType = input.getType().cast(); Value relu = rewriter.create(loc, inputType, input); Value cst6 = rewriter.create(loc, rewriter.getI64IntegerAttr(6)); Value sixTensor = createRank0Tensor(rewriter, loc, inputType, cst6); Value relu6Out = rewriter.create(loc, inputType, relu, sixTensor); return relu6Out; } // Hardswish(x) = x * Relu6(x+3)/6 namespace { class DecomposeAtenHardswishOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenHardswishOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); Type inputType = input.getType(); Value constantOne = rewriter.create( loc, rewriter.getI64IntegerAttr(1)); Value constantThree = rewriter.create( loc, rewriter.getI64IntegerAttr(3)); Value constantSix = rewriter.create( loc, rewriter.getI64IntegerAttr(6)); Value inputPlusThree = rewriter.create( loc, inputType, input, constantThree, /*alpha=*/constantOne); Value relu6 = getRelu6Results(rewriter, loc, inputPlusThree); Value divTensor = rewriter.create(loc, inputType, relu6, constantSix); Value mulTensor = rewriter.create(loc, inputType, divTensor, input); rewriter.replaceOp(op, mulTensor); return success(); } }; } // namespace namespace { class DecomposeAtenTOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenTOp op, PatternRewriter &rewriter) const override { Value lhs = op.self(); int lhsRank = getTensorRank(lhs); auto loc = op.getLoc(); if (lhsRank > 2 || lhsRank < 0) { std::string errorMessage = "t() expects a tensor with <=2 dimensions, but self is " + std::to_string(lhsRank) + "D"; return rewriter.notifyMatchFailure(op, errorMessage.c_str()); } else if (lhsRank < 2) rewriter.replaceOp(op, lhs); else { Value zero = rewriter.create(loc, rewriter.getI64IntegerAttr(0)); Value one = rewriter.create(loc, rewriter.getI64IntegerAttr(1)); rewriter.replaceOpWithNewOp(op, op.getType(), lhs, zero, one); } return success(); } }; } // namespace // Decompose aten.repeat into aten.expand and aten.view ops. // // Ref: https://pytorch.org/docs/stable/generated/torch.Tensor.repeat.html // // For shape [S1, S2, S3] and repeats [M0, M1, M2, M3] // MS0 = M0; MS1 = M1 * S1; MS2 = M2 * S2; MS3 = M3 * S3 // // def aten_repeat(self, repeats): // sizes = self.size() // unsqueezed_sizes = [] // expanded_sizes = [] // reshape_sizes = [] // leading_rank = repeats.size() - sizes.size() // for r in range(leading_rank): // unsqueezed_sizes.append(1) // expanded_sizes.append(repeats[r]) // reshaped_sizes.append(repeats[r]) // // for s, m in zip(sizes, repeats[leading_rank:]): // unsqueezed_sizes += [1, s] // expanded_sizes += [m, s] // reshaped_sizes += [m * s] // return self.view(unsqueezed_sizes).expand(expanded_sizes).view(reshaped_sizes) // namespace { class DecomposeAtenRepeatOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenRepeatOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value self = op.self(); MLIRContext *context = op.getContext(); int rank = getTensorRank(self); if (rank < 0) return rewriter.notifyMatchFailure(op, "Unimplemented: unranked tensor"); SmallVector repeats; if (!getListConstructElements(op.repeats(), repeats)) return rewriter.notifyMatchFailure( op, "Unimplemented: repeats not list of Scalar"); if (rank > (int)repeats.size()) { return rewriter.notifyMatchFailure( op, "repeats are not matched with self's rank"); } auto insertDimSizes = [](SmallVector &dimSizes, SmallVector &shape, const ArrayRef &vals) { dimSizes.insert(dimSizes.end(), vals.begin(), vals.end()); std::transform(vals.begin(), vals.end(), std::back_inserter(shape), [&](Value val) -> int64_t { int64_t cst_val; if (matchPattern(val, m_TorchConstantInt(&cst_val))) { return cst_val; } else { return ShapedType::kDynamicSize; } }); }; Value one = rewriter.create( loc, rewriter.getI64IntegerAttr(1)); SmallVector unsqueezedSizes, expandedSizes, reshapedSizes; SmallVector unsqueezedIntSizes, expandedIntSizes; auto leadingRank = repeats.size() - rank; assert(leadingRank >= 0 && "leadingRank should greater than 0"); for (size_t i = 0; i < leadingRank; ++i) { insertDimSizes(unsqueezedSizes, unsqueezedIntSizes, ArrayRef{one}); insertDimSizes(expandedSizes, expandedIntSizes, ArrayRef{repeats[i]}); reshapedSizes.push_back(repeats[i]); } auto selfType = self.getType().dyn_cast(); auto selfShape = selfType.getSizes(); for (int i = 0; i < rank; i++) { auto scale = repeats[i + leadingRank]; Value dimSize; if (selfShape[i] == ShapedType::kDynamicSize) { Value dim = rewriter.create( loc, rewriter.getI64IntegerAttr(i)); dimSize = rewriter.create(loc, self, dim); } else { dimSize = rewriter.create( loc, rewriter.getI64IntegerAttr(selfShape[i])); } insertDimSizes(unsqueezedSizes, unsqueezedIntSizes, ArrayRef{one, dimSize}); insertDimSizes(expandedSizes, expandedIntSizes, ArrayRef{scale, dimSize}); Value scaledSize = rewriter.create(loc, dimSize, scale); reshapedSizes.push_back(scaledSize); } Type dtype = self.getType().cast().getDtype(); Type unsqueezedType = ValueTensorType::get(context, llvm::makeArrayRef(unsqueezedIntSizes), dtype); Type expandedType = ValueTensorType::get(context, llvm::makeArrayRef(expandedIntSizes), dtype); auto listType = Torch::ListType::get(Torch::IntType::get(op.getContext())); Value unsqueezedDims = rewriter.create(loc, listType, unsqueezedSizes); Value expandedDims = rewriter.create(loc, listType, expandedSizes); Value reshapedDims = rewriter.create(loc, listType, reshapedSizes); auto reshaped = rewriter.create(loc, unsqueezedType, op.self(), unsqueezedDims); auto expanded = rewriter.create(loc, expandedType, reshaped, expandedDims); rewriter.replaceOpWithNewOp(op, op.getType(), expanded, reshapedDims); return success(); } }; } // namespace // Decompose aten.expand into aten.broadcast_to op. namespace { class DecomposeAtenExpandOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenExpandOp op, PatternRewriter &rewriter) const override { bool implicit = false; if (!matchPattern(op.implicit(), m_TorchConstantBool(&implicit)) || implicit) { return rewriter.notifyMatchFailure( op, "unimplemented: requires implicit to be false"); } rewriter.replaceOpWithNewOp(op, op.getType(), op.self(), op.size()); return success(); } }; } // namespace // Decompose aten.where.Scalar into aten.where.self op. namespace { class DecomposeAtenWhereScalarOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenWhereScalarOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); auto resType = op.getType().cast(); Value selfTensor = createRank0Tensor(rewriter, loc, resType, op.self()); Value otherTensor = createRank0Tensor(rewriter, loc, resType, op.other()); rewriter.replaceOpWithNewOp(op, resType, op.condition(), selfTensor, otherTensor); return success(); } }; } // namespace // Decompose aten.where.ScalarOther into aten.where.self op. namespace { class DecomposeAtenWhereScalarOtherOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenWhereScalarOtherOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); auto resType = op.getType().cast(); Value otherTensor = createRank0Tensor(rewriter, loc, resType, op.other()); rewriter.replaceOpWithNewOp(op, resType, op.condition(), op.self(), otherTensor); return success(); } }; } // namespace // Decompose aten.where.ScalarSelf into aten.where.self op. namespace { class DecomposeAtenWhereScalarSelfOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenWhereScalarSelfOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); auto resType = op.getType().cast(); Value selfTensor = createRank0Tensor(rewriter, loc, resType, op.self()); rewriter.replaceOpWithNewOp(op, resType, op.condition(), selfTensor, op.other()); return success(); } }; } // namespace // Decompose aten.convolution_overrideable to aten.convolution namespace { class DecomposeAtenConvolutionOverrideableOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenConvolutionOverrideableOp op, PatternRewriter &rewriter) const override { rewriter.replaceOpWithNewOp( op, op->getResultTypes(), op.input(), op.weight(), op.bias(), op.stride(), op.padding(), op.dilation(), op.transposed(), op.output_padding(), op.groups()); return success(); } }; } // namespace // Decompose aten.convolution_overrideable to aten.convolution namespace { class DecomposeAten_ConvolutionOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(Aten_ConvolutionOp op, PatternRewriter &rewriter) const override { rewriter.replaceOpWithNewOp( op, op->getResultTypes(), op.input(), op.weight(), op.bias(), op.stride(), op.padding(), op.dilation(), op.transposed(), op.output_padding(), op.groups()); return success(); } }; } // namespace // Decompose aten.conv2d to aten.convolution namespace { class DecomposeAtenConv2dOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenConv2dOp op, PatternRewriter &rewriter) const override { Value emptyList = rewriter.create( op.getLoc(), Torch::ListType::get(Torch::IntType::get(op.getContext())), SmallVector()); Value cstFalse = rewriter.create(op.getLoc(), false); rewriter.replaceOpWithNewOp( op, op->getResultTypes(), op.input(), op.weight(), op.bias(), op.stride(), op.padding(), op.dilation(), cstFalse, emptyList, op.groups()); return success(); } }; } // namespace // Decompose aten.addmm into aten.mm and aten.add.Tensor op. namespace { class DecomposeAtenAddmmOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenAddmmOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); Value mat1 = op.mat1(); Value mat2 = op.mat2(); // The operands `mat1`, `mat2` to aten.addmm must be of rank 2. if (getTensorRank(mat1) != 2 || getTensorRank(mat2) != 2) { return rewriter.notifyMatchFailure( op, "expected mat1, mat2 operands to aten.addmm to be rank 2"); } // TODO: Handle integer type operands. if (!input.getType() .cast() .getDtype() .isa()) { return rewriter.notifyMatchFailure( op, "unimplemented: non-floating point dtype"); } // matrix multiplication: matmul = mat1 @ mat2 Value matmul = rewriter.create(loc, op.getType(), mat1, mat2); // scaledInput = self * beta Value scaledInput = rewriter.create(loc, input.getType(), input, op.beta()); // result = scaledInput + alpha * matmul rewriter.replaceOpWithNewOp(op, op.getType(), scaledInput, matmul, op.alpha()); return success(); } }; } // namespace // Decompose aten.mean into: sum(x)/div(numTensorElements). namespace { class DecomposeAtenMeanOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenMeanOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); Value output = op.result(); BaseTensorType outputTensorType = output.getType().cast(); Value sum = rewriter.create(loc, outputTensorType, input, op.dtype()); Value numTensorElements = rewriter.create(loc, input); rewriter.replaceOpWithNewOp(op, outputTensorType, sum, numTensorElements); return success(); } }; } // namespace // productDimSize = product(size(dim) for dim in dims) // aten.mean(x, dims) = aten.sum(x, dims) / productDimSize. namespace { class DecomposeAtenMeanDimOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenMeanDimOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); Value dimList = op.dim(); Value keepDim = op.keepdim(); Value dtype = op.dtype(); Type outputType = op.getType(); MLIRContext *context = op.getContext(); BaseTensorType inputType = input.getType().cast(); if (!inputType.hasDtype() || !inputType.getDtype().isa() || !isNoneOrFloatDtype(context, dtype)) { return rewriter.notifyMatchFailure( op, "only floating-point type is supported"); } auto dimListConstruct = dimList.getDefiningOp(); if (!dimListConstruct) { return rewriter.notifyMatchFailure( op, "expect dimList to be constructed from list construct"); } // Compute sum along dimensions specified in `dimList`. Value sumAlongDims = rewriter.create( loc, outputType, input, dimList, keepDim, dtype); // `productDimSize` is product of sizes of dimensions to be reduced. Value productDimSize = rewriter.create( loc, rewriter.getI64IntegerAttr(1)); for (Value dim : dimListConstruct.elements()) { Value dimSize = rewriter.create(loc, input, dim); productDimSize = rewriter.create(loc, productDimSize, dimSize); } rewriter.replaceOpWithNewOp(op, outputType, sumAlongDims, productDimSize); return success(); } }; } // namespace namespace { class DecomposeAtenSquareOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenSquareOp op, PatternRewriter &rewriter) const override { Value self = op.self(); rewriter.replaceOpWithNewOp(op, op.getType(), self, self); return success(); } }; } // namespace // Silu(x) = sigmoid(x) * x namespace { class DecomposeAtenSiluOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenSiluOp op, PatternRewriter &rewriter) const override { Value self = op.self(); Value sigmoid = rewriter.create(op.getLoc(), op.getType(), self); rewriter.replaceOpWithNewOp(op, op.getType(), sigmoid, self); return success(); } }; } // namespace // pDash = 1.0 - p // boolMask = aten.rand_like(input) < pDash // dropout(input, p, train=True) = (boolMask * input) / pDash // dropout(input, p, train=False) = input namespace { class DecomposeAtenDropoutOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenDropoutOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.input(); Value prob = op.p(); bool train = false; if (!matchPattern(op.train(), m_TorchConstantBool(&train))) return rewriter.notifyMatchFailure(op, "train must be a boolean constant"); if (!train) { rewriter.replaceOp(op, input); return success(); } BaseTensorType inputType = input.getType().cast(); if (!inputType.hasDtype() || !inputType.getDtype().isa()) return rewriter.notifyMatchFailure( op, "only support floating type input for training mode"); Value noneVal = rewriter.create(loc); Value floatOne = rewriter.create(loc, rewriter.getF64FloatAttr(1.0)); Value oneMinusP = rewriter.create(loc, floatOne, prob); Value boolMask = rewriter.create( loc, inputType, input, oneMinusP, /*generator=*/noneVal); Value maskedInput = rewriter.create(loc, inputType, boolMask, input); rewriter.replaceOpWithNewOp(op, op.getType(), maskedInput, oneMinusP); return success(); } }; } // namespace // Decompose aten.var into: sum(square(x - mean))/(numTensorElements-1) // for unbiased and mean(square(x - mean)) for biased case. namespace { class DecomposeAtenVarOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenVarOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value self = op.self(); BaseTensorType inputTensorTy = self.getType().cast(); if (!inputTensorTy.hasDtype() || !inputTensorTy.getDtype().isa()) { return rewriter.notifyMatchFailure(op, "Only aten.var support floating type"); } BaseTensorType rank0FloatTensorTy = op.getType().cast(); if (!rank0FloatTensorTy.hasSizes() || rank0FloatTensorTy.getSizes().size() != 0) { return rewriter.notifyMatchFailure( op, "expected aten.var to have a rank 0 tensor type"); } bool unbiased; if (!matchPattern(op.unbiased(), m_TorchConstantBool(&unbiased))) { return rewriter.notifyMatchFailure( op, "Only support constant unbiased for aten.var"); } Value dtype = rewriter.create(loc); Value mean = rewriter.create(loc, rank0FloatTensorTy, self, dtype); Value subMean = createTensorSub(rewriter, loc, inputTensorTy, self, mean); Value square = rewriter.create(loc, inputTensorTy, subMean); Value var; if (unbiased) { // Bessel’s correction is used. Divide the square sum by // numTensorElements-1. Value squareSum = rewriter.create(loc, rank0FloatTensorTy, square, dtype); Value numTensorElements = rewriter.create(loc, square); Value cst1 = rewriter.create( loc, rewriter.getI64IntegerAttr(1)); Value numTensorElementsSub1 = rewriter.create(loc, numTensorElements, cst1); var = rewriter.replaceOpWithNewOp( op, rank0FloatTensorTy, squareSum, numTensorElementsSub1); } else { var = rewriter.replaceOpWithNewOp(op, rank0FloatTensorTy, square, dtype); } return success(); } }; } // namespace // Decompose aten.std to sqrt(var(x)) namespace { class DecomposeAtenStdOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenStdOp op, PatternRewriter &rewriter) const override { Value self = op.self(); BaseTensorType inputTensorTy = self.getType().cast(); if (!inputTensorTy.hasDtype() || !inputTensorTy.getDtype().isa()) { return rewriter.notifyMatchFailure(op, "Only aten.std support floating type"); } Value var = rewriter.create(op->getLoc(), op.getType(), op.self(), op.unbiased()); rewriter.replaceOpWithNewOp(op, op.getType(), var); return success(); } }; } // namespace // Hardsigmoid(x) = max(0, min(1, (x+3)/6)) namespace { class DecomposeAtenHardsigmoidOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenHardsigmoidOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); BaseTensorType inputType = input.getType().cast(); // outputTensor = (input + 3) / 6. Value constantOne = rewriter.create( loc, rewriter.getI64IntegerAttr(1)); Value constantThree = rewriter.create( loc, rewriter.getI64IntegerAttr(3)); Value constantSix = rewriter.create( loc, rewriter.getI64IntegerAttr(6)); Value inputPlusThree = rewriter.create( loc, inputType, input, constantThree, /*alpha=*/constantOne); Value outputTensor = rewriter.create( loc, inputType, inputPlusThree, constantSix); // result = max(0, min(1, (input+3)/6)) Value constantZero = rewriter.create( loc, rewriter.getI64IntegerAttr(0)); Value oneTensor = createRank0Tensor(rewriter, loc, inputType, constantOne); Value minResult = rewriter.create(loc, inputType, oneTensor, outputTensor); Value zeroTensor = createRank0Tensor(rewriter, loc, inputType, constantZero); rewriter.replaceOpWithNewOp(op, op.getType(), zeroTensor, minResult); return success(); } }; } // namespace namespace { class DecomposeAtenHardtanhOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenHardtanhOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); BaseTensorType inputType = input.getType().cast(); // result = min(maxVal, max(minVal, x)) Value minVal = createRank0Tensor(rewriter, loc, inputType, op.min_val()); Value maxResult = rewriter.create(loc, inputType, input, minVal); Value maxVal = createRank0Tensor(rewriter, loc, inputType, op.max_val()); rewriter.replaceOpWithNewOp(op, op.getType(), maxVal, maxResult); return success(); } }; } // namespace namespace { class DecomposeAtenRandLikeOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenRandLikeOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); Type resultType = op.getType(); auto inputType = input.getType().cast(); if (!inputType.hasDtype() || !inputType.getDtype().isa()) { return rewriter.notifyMatchFailure(op, "only support floating-point type"); } // Create a uniform random op with low and high set to 0.0 and 1.0, // respectively. Value none = rewriter.create(loc); Value zero = rewriter.create(loc, rewriter.getF64FloatAttr(0.0)); Value one = rewriter.create(loc, rewriter.getF64FloatAttr(1.0)); Value emptyTensor = rewriter.create( loc, resultType, input, op.dtype(), op.layout(), op.device(), op.pin_memory(), op.memory_format()); rewriter.replaceOpWithNewOp( op, resultType, emptyTensor, /*from=*/zero, /*to=*/one, /*generator=*/none); return success(); } }; } // namespace namespace { // Bernoulli(x, p) = (rand_like(float(x)) < p).cast(type(x)). Here, // 1. p must be a float tensor. // 2. The shape of p should be broadcastable to the shape of x. // 3. Bernoulli(x, p) returns a tensor of the same type as that of x. static LogicalResult decomposeBernoulliLikeOp(PatternRewriter &rewriter, Operation *op, Location loc, Value input, Value prob, Value &output) { auto inputType = input.getType().cast(); auto probType = prob.getType().cast(); // Both the `input` and `prob` must be ranked tensors. if (!inputType.hasSizes() || !inputType.hasDtype() || !probType.hasSizes() || !probType.hasDtype()) { return rewriter.notifyMatchFailure( op, "can't decompose bernoulli like ops without sizes or dtype"); } // The `prob` is expected to be a float type tensor. if (!probType.getDtype().isa()) { return rewriter.notifyMatchFailure( op, "probabilities must be a float type tensor"); } // Since the `aten.rand_like` op expects float-type operand, create a // float-type tensor with the same shape as that of the `input`. Value floatTensor = convertTensorToDtype(rewriter, loc, input, rewriter.getF64Type()); Value none = rewriter.create(loc); Value randomVal = rewriter.create( loc, floatTensor.getType(), floatTensor, /*dtype=*/none, /*layout=*/none, /*device=*/none, /*pin_memory=*/none, /*memory_format=*/none); // Bernoulli(x, p) = rand_like(float(x)) < p. auto boolResType = inputType.getWithSizesAndDtype(inputType.getSizes(), rewriter.getI1Type()); Value lessThanP = rewriter.create(loc, boolResType, randomVal, prob); // As the `output` is expected to be of the `input` type, convert the boolean // tensor `lessThanP` to a `input` type tensor. output = convertTensorToDtype(rewriter, loc, lessThanP, inputType.getDtype()); return success(); } // aten.bernoulli(x) = rand_like(x) < x. Here, the input x is a tensor // containing probabilities to be used for drawing the binary random number. class DecomposeAtenBernoulliOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenBernoulliOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); if (!op.generator().getType().isa()) return rewriter.notifyMatchFailure( op, "The generator has to ben None because only global default " "generator is supported"); Value output; if (failed( decomposeBernoulliLikeOp(rewriter, op, loc, input, input, output))) return rewriter.notifyMatchFailure( op, "decomposeBernoulliLikeOp failed to decompose the op"); rewriter.replaceOp(op, output); return success(); } }; // aten.bernoulli.float(x, p) = (rand_like(float(x)) < tensor(p)).cast(type(x)). // Since the input x can be an integer tensor, it's important to cast it to // float type before passing it to the `aten.rand_like` op. class DecomposeValsemVariantAtenBernoulliFloatOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ValsemVariantAtenBernoulliFloatOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); Value p = op.p(); if (!op.generator().getType().isa()) return rewriter.notifyMatchFailure( op, "The generator has to ben None because only global default " "generator is supported"); auto inputType = input.getType().cast(); SmallVector empty; Type tensorType = inputType.getWithSizesAndDtype(llvm::makeArrayRef(empty), rewriter.getF64Type()); Value prob = rewriter.create(loc, tensorType, p); Value output; if (failed( decomposeBernoulliLikeOp(rewriter, op, loc, input, prob, output))) return rewriter.notifyMatchFailure( op, "decomposeBernoulliLikeOp failed to decompose the op"); rewriter.replaceOp(op, output); return success(); } }; // aten.bernoulli.Tensor(x, p) = (rand_like(float(x)) < p).cast(type(x)). // Since the input x can be an integer tensor, it's important to cast it to // float type before passing it to the `aten.rand_like` op. class DecomposeValsemVariantAtenBernoulliTensorOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ValsemVariantAtenBernoulliTensorOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); Value prob = op.p(); if (!op.generator().getType().isa()) return rewriter.notifyMatchFailure( op, "The generator has to ben None because only global default " "generator is supported"); Value output; if (failed( decomposeBernoulliLikeOp(rewriter, op, loc, input, prob, output))) return rewriter.notifyMatchFailure( op, "decomposeBernoulliLikeOp failed to decompose the op"); rewriter.replaceOp(op, output); return success(); } }; } // namespace namespace { template class DecomposeAtenAddCLikeOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value input = op.self(); Value tensor1 = op.tensor1(); Value tensor2 = op.tensor2(); Value value = op.value(); Value product = rewriter.create(loc, op.getType(), tensor1, tensor2); rewriter.replaceOpWithNewOp(op, op.getType(), input, product, value); return success(); } }; class DecomposeAtenLayerNormOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenLayerNormOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); auto input = op.input().getType().cast(); if (!input.hasSizes()) return rewriter.notifyMatchFailure( op, "input tensor should have known sizes."); int64_t inputRank = input.getSizes().size(); Value normalizedShape = op.normalized_shape(); SmallVector normalizedShapeSizesTorchInt; getListConstructElements(normalizedShape, normalizedShapeSizesTorchInt); int64_t axis = inputRank - normalizedShapeSizesTorchInt.size(); std::vector meanVarSizes(inputRank, 1); for (int i = 0; i < axis; i++) meanVarSizes[i] = input.getSizes()[i]; auto meanVarType = input.getWithSizesAndDtype( llvm::makeArrayRef(meanVarSizes), input.getDtype()); auto nativeLayerNorm = rewriter.create( loc, op.getType(), meanVarType, meanVarType, op.input(), op.normalized_shape(), op.weight(), op.bias(), op.eps()); rewriter.replaceOp(op, nativeLayerNorm.getResult(0)); return success(); } }; } // namespace namespace { // Decompose `aten.empty_like` op into `aten.size` and `aten.empty` ops. class DecomposeAtenEmptyLikeOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenEmptyLikeOp op, PatternRewriter &rewriter) const override { auto sizeListType = Torch::ListType::get(Torch::IntType::get(op.getContext())); Value sizeList = rewriter.create(op.getLoc(), sizeListType, op.self()); rewriter.replaceOpWithNewOp( op, op.getType(), sizeList, op.dtype(), op.layout(), op.device(), op.pin_memory(), op.memory_format()); return success(); } }; } // namespace namespace { // The `aten.arange` op is converted to `aten.arange.start_step` op. class DecomposeAtenArangeOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenArangeOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); // The AtenArangeOp doesn't have a start and step value. Therefore we set // them as default values 0 and 1, respectively. Value start, step; start = rewriter.create( loc, rewriter.getI64IntegerAttr(0)); step = rewriter.create(loc, rewriter.getI64IntegerAttr(1)); rewriter.replaceOpWithNewOp( op, op.getType(), start, op.end(), step, op.dtype(), op.layout(), op.device(), op.pin_memory()); return success(); } }; } // namespace namespace { // The `aten.arange.start` op is converted to `aten.arange.start_step` op. class DecomposeAtenArangeStartOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenArangeStartOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); // The AtenArangeStartOp doesn't have a step value. Therefore we set it as // default value 1. Value step; step = rewriter.create(loc, rewriter.getI64IntegerAttr(1)); rewriter.replaceOpWithNewOp( op, op.getType(), op.start(), op.end(), step, op.dtype(), op.layout(), op.device(), op.pin_memory()); return success(); } }; } // namespace namespace { // Decompose constant tensor allocation like ops. template class DecomposeConstantTensorAllocLikeOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); // Allocate a memory block. Value initTensor = rewriter.create( loc, op.getType(), op.self(), op.dtype(), op.layout(), op.device(), op.pin_memory(), op.memory_format()); Value constVal = rewriter.create( loc, rewriter.getI64IntegerAttr(fillVal)); // Initialize the allocated memory block with `fillVal`. rewriter.replaceOpWithNewOp( op, initTensor.getType(), initTensor, constVal); return success(); } }; } // namespace namespace { class DecomposeAtenNativeBatchNormOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenNativeBatchNormOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); MLIRContext *context = op.getContext(); Value input = op.input(); Value weight = op.weight(); Value bias = op.bias(); Value runningMean = op.running_mean(); Value runningVar = op.running_var(); Value eps = op.eps(); // TODO: Add support for `training` mode. bool training = false; if (!matchPattern(op.training(), m_TorchConstantBool(&training)) || training) return rewriter.notifyMatchFailure( op, "unimplemented: training mode is not supported"); // Rank of the input tensor must be greater than or equal to 2. The shape of // the `input` is supposed to be (N, C, D?, H?, W?). int64_t inputRank = getTensorRank(input); if (inputRank < 2) return rewriter.notifyMatchFailure( op, "input must have rank greater than or equal to 2"); // In the inference mode, the `runningMean` and `runningVar` must not be // None. if (runningMean.getType().isa() || runningVar.getType().isa()) return rewriter.notifyMatchFailure( op, "running stats must not be None in inference mode"); // Rank of `runningMean` and `runningVar` must be exactly 1. if (getTensorRank(runningMean) != 1 || getTensorRank(runningVar) != 1) return rewriter.notifyMatchFailure( op, "expected running_mean and running_var to be rank 1"); Value zero = rewriter.create(loc, rewriter.getI64IntegerAttr(0)); Value one = rewriter.create(loc, rewriter.getI64IntegerAttr(1)); Value numFeatures = rewriter.create(loc, input, /*dim=*/one); // TODO: Add Runtime Asserts to check the shape of weight, bias, // running_mean and running_var to be (numFeatures). // The `runningMean` and `runningVar` must be reshaped to (1, C, 1?, 1?, 1?) // to make it broadcast-compatible with (N, C, D?, H?, W?). // 1. runningMean = runningMean.view(1, C, 1?, 1?, 1?) // 2. runningVar = runningVar.view(1, C, 1?, 1?, 1?) SmallVector runningStatsShape(inputRank, one); runningStatsShape[1] = numFeatures; Value runningStatsSizeList = rewriter.create( loc, ListType::get(IntType::get(context)), runningStatsShape); SmallVector runningStatsShapeInt(inputRank, 1); runningStatsShapeInt[1] = ShapedType::kDynamicSize; Type dtype = input.getType().cast().getDtype(); Type reshapeType = ValueTensorType::get( context, llvm::makeArrayRef(runningStatsShapeInt), dtype); runningMean = rewriter.create(loc, reshapeType, runningMean, runningStatsSizeList); runningVar = rewriter.create(loc, reshapeType, runningVar, runningStatsSizeList); // normalizedInput = (input - runningMean) / (sqrt(runningVar + eps)). Value inputSubMean = rewriter.create( loc, input.getType(), input, runningMean, /*alpha=*/one); Value varEps = rewriter.create( loc, runningVar.getType(), runningVar, eps, /*alpha=*/one); Value invStd = rewriter.create(loc, varEps.getType(), varEps); Value normalizedInput = rewriter.create( loc, inputSubMean.getType(), inputSubMean, invStd); // The `weight` and `bias` must be reshaped to (1, C, 1?, 1?, 1?) to make it // broadcast-compatible with (N, C, D?, H?, W?). // 1. weight = weight.view(1, C, 1?, 1?, 1?) // 2. bias = bias.view(1, C, 1?, 1?, 1?) // 3. output = normalizedInput * weight + bias Value batchNormOutput = normalizedInput; if (!weight.getType().isa()) { // Rank of `weight` must be exactly 1. if (getTensorRank(weight) != 1) return rewriter.notifyMatchFailure(op, "expected weight to be rank 1"); weight = rewriter.create(loc, reshapeType, weight, runningStatsSizeList); batchNormOutput = rewriter.create( loc, batchNormOutput.getType(), batchNormOutput, weight); } if (!bias.getType().isa()) { // Rank of `bias` must be exactly 1. if (getTensorRank(bias) != 1) return rewriter.notifyMatchFailure(op, "expected bias to be rank 1"); bias = rewriter.create(loc, reshapeType, bias, runningStatsSizeList); batchNormOutput = rewriter.create( loc, batchNormOutput.getType(), batchNormOutput, bias, /*alpha=*/one); } // The `mean` and `invstd` outputs are empty tensors in inference mode. Value zeroList = rewriter.create( loc, Torch::ListType::get(zero.getType()), zero); Value none = rewriter.create(loc); Value emptyMeanTensor = rewriter.create( loc, op.getType(1), zeroList, /*dtype=*/none, /*layout=*/none, /*device=*/none, /*pin_memory=*/none, /*memory_format=*/none); Value emptyInvStdTensor = rewriter.create( loc, op.getType(2), zeroList, /*dtype=*/none, /*layout=*/none, /*device=*/none, /*pin_memory=*/none, /*memory_format=*/none); rewriter.replaceOp(op, {batchNormOutput, emptyMeanTensor, emptyInvStdTensor}); return success(); } }; } // namespace // Decompse `Aten_UnsafeViewOp` into `AtenViewOp`. _unsafe_view() differs from // view() in that the returned tensor isn't treated as a view for the purposes // of automatic differentiation. It's only safe to use if the `self` tensor is // temporary. For example, the viewed tensor here (a + b) is discarded // immediately after viewing: // // res = _unsafe_view(a + b, size); // // This is a hack because in-place operations on tensors treated like views // can be much more expensive than the same operations on non-view tensors. // Refer to // https://github.com/pytorch/pytorch/blob/364055b2771ecf9b54f1d67a8bf44bb5496476d4/aten/src/ATen/native/TensorShape.cpp#L2072 namespace { class DecomposeAten_UnsafeViewOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(Aten_UnsafeViewOp op, PatternRewriter &rewriter) const override { rewriter.replaceOpWithNewOp(op, op.getType(), op.self(), op.size()); return success(); } }; } // namespace // In PyTorch, _reshape_alias just uses an already computed stride. // See // https://github.com/pytorch/pytorch/blob/d8c31a819d4a65e732b5901e3b994e1869851f1a/aten/src/ATen/native/TensorShape.cpp#L1153 // Note that this is the same decomposition as in AOTAutograd // https://github.com/pytorch/functorch/blob/a3042d94e616d4143813668b1372d9d4545be14e/functorch/_src/aot_autograd.py#L104 namespace { class DecomposeAten_ReshapeAliasOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(Aten_ReshapeAliasOp op, PatternRewriter &rewriter) const override { rewriter.replaceOpWithNewOp(op, op.getType(), op.self(), op.size()); return success(); } }; } // namespace namespace { // Decompose constant tensor like ops. template class DecomposeConstantTensorNewLikeOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(OpTy op, PatternRewriter &rewriter) const override { Value dtype = op.dtype(); if (dtype.getType().isa()) { BaseTensorType tensorType = op.self().getType().template cast(); dtype = getDtypeIntValueForType(rewriter, op.getLoc(), tensorType.getDtype()); } rewriter.replaceOpWithNewOp(op, op.getType(), op.size(), dtype, op.layout(), op.device(), op.pin_memory()); return success(); } }; } // namespace namespace { // Decompose `aten.full` op into `aten.empty` and `aten.fill` ops. class DecomposeAtenFullOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenFullOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value noneVal = rewriter.create(loc); Value emptyTensor = rewriter.create( loc, op.getType(), op.size(), op.dtype(), op.layout(), op.device(), op.pin_memory(), /*memory_format=*/noneVal); rewriter.replaceOpWithNewOp( op, op.getType(), emptyTensor, op.fill_value()); return success(); } }; } // namespace namespace { // Decompose `aten.full_like` op into `aten.empty_like` and `aten.fill` ops. class DecomposeAtenFullLikeOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenFullLikeOp op, PatternRewriter &rewriter) const override { Value emptyTensor = rewriter.create( op.getLoc(), op.getType(), op.self(), op.dtype(), op.layout(), op.device(), op.pin_memory(), op.memory_format()); rewriter.replaceOpWithNewOp( op, op.getType(), emptyTensor, op.fill_value()); return success(); } }; } // namespace namespace { // Decompose `aten.index_put` op into `valsem.aten.index_put_impl` op. class DecomposeAtenIndexPutOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenIndexPutOp op, PatternRewriter &rewriter) const override { Value cstFalse = rewriter.create(op.getLoc(), false); rewriter.replaceOpWithNewOp( op, op.getType(), op.self(), op.indices(), op.values(), op.accumulate(), /*unsafe=*/cstFalse); return success(); } }; } // namespace namespace { class DecomposeAtenExpandAsOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenExpandAsOp op, PatternRewriter &rewriter) const override { auto sizeListType = Torch::ListType::get(Torch::IntType::get(op.getContext())); Value sizeList = rewriter.create(op.getLoc(), sizeListType, op.other()); rewriter.replaceOpWithNewOp(op, op.getType(), op.self(), sizeList); return success(); } }; } // namespace namespace { // Decompose `aten._to_copy` op into `valsem.aten.copy` op. class DecomposeAten_ToCopyOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(Aten_ToCopyOp op, PatternRewriter &rewriter) const override { Value emptyTensor = rewriter.create( op.getLoc(), op.getType(), op.self(), op.dtype(), op.layout(), op.device(), op.pin_memory(), op.memory_format()); rewriter.replaceOpWithNewOp( op, op.getType(), emptyTensor, op.self(), op.non_blocking()); return success(); } }; } // namespace namespace { // Decompose `aten.new_empty` op into `aten.empty.memory_format` op. class DecomposeAtenNewEmptyOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenNewEmptyOp op, PatternRewriter &rewriter) const override { Value noneVal = rewriter.create(op.getLoc()); Value dtype = op.dtype(); if (dtype.getType().isa()) { BaseTensorType tensorType = op.self().getType().cast(); dtype = getDtypeIntValueForType(rewriter, op.getLoc(), tensorType.getDtype()); } rewriter.replaceOpWithNewOp( op, op.getType(), op.size(), dtype, op.layout(), op.device(), op.pin_memory(), /*memory_format=*/noneVal); return success(); } }; } // namespace namespace { // Decompose `aten.index_put.hacked_twin` op into `valsem.aten.index_put_impl` // op. class DecomposeAtenIndexPutHackedTwinOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenIndexPutHackedTwinOp op, PatternRewriter &rewriter) const override { Value cstFalse = rewriter.create(op.getLoc(), false); rewriter.replaceOpWithNewOp( op, op.getType(), op.self(), op.indices(), op.values(), op.accumulate(), /*unsafe=*/cstFalse); return success(); } }; } // namespace namespace { // Decompose `aten.pad` op into `aten.constant_pad_nd` op. class DecomposeAtenPadOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenPadOp op, PatternRewriter &rewriter) const override { Value value = op.value(); if (value.getType().isa()) return rewriter.notifyMatchFailure(op, "optional type not supported"); if (value.getType().isa()) value = rewriter.create( op.getLoc(), rewriter.getF64FloatAttr(0)); rewriter.replaceOpWithNewOp( op, op.getType(), op.self(), op.pad(), value); return success(); } }; } // namespace namespace { // Decompose `aten.to.dtype_layout` op into `aten.to.dtype` op. class DecomposeAtenToDtypeLayoutOp : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenToDtypeLayoutOp op, PatternRewriter &rewriter) const override { // TODO: Add support for pin_memory arg equal to `True`. if (!op.pin_memory().getType().isa()) { bool pinMemory; if (!matchPattern(op.pin_memory(), m_TorchConstantBool(&pinMemory))) return rewriter.notifyMatchFailure( op, "unimplemented: pin_memory must be a constant"); else if (pinMemory) return rewriter.notifyMatchFailure( op, "unimplemented: pin_memory is expected to be false"); } // TODO: Add support for non-None device arg. if (!op.device().getType().isa()) { return rewriter.notifyMatchFailure( op, "unimplemented: device arg must be None"); } // TODO: Add support for non-strided layout. // torch.layout is by default strided i.e. 0. if (!op.layout().getType().isa()) { int64_t tensorLayout; if (!matchPattern(op.layout(), m_TorchConstantInt(&tensorLayout))) return rewriter.notifyMatchFailure( op, "unimplemented: layout must be a constant"); else if (tensorLayout != torch_upstream::Layout::Strided) return rewriter.notifyMatchFailure( op, "unimplemented: layout is expected to be strided"); } rewriter.replaceOpWithNewOp(op, op.getType(), op.self(), op.dtype(), op.non_blocking(), op.copy(), op.memory_format()); return success(); } }; } // namespace namespace { // Decompose `aten.adaptive_avg_pool2d` op into `aten.avg_pool2d` op. // // For AdaptiveAvgPool2d op, when the input size is an integer multiple of // output size the kernel_size, stride and padding is calculated as follows: // strideH = inH // outH // strideW = inH // outH // kernelH = inH - [(outH - 1) * strideH] // kernelW = inW - [(outW - 1) * strideW] // paddingH = 0, paddingW = 0 // // For the special case, when the output size is one for all dimensions, // the kernel size is same as the input size. class DecomposeAtenAdaptiveAvgPool2dOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenAdaptiveAvgPool2dOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); MLIRContext *context = op.getContext(); Value input = op.self(); int64_t rank = getTensorRank(input); SmallVector inputHW; Value dimH = rewriter.create( loc, rewriter.getI64IntegerAttr(rank - 2)); inputHW.push_back( /*inH=*/rewriter.create(loc, input, dimH)); Value dimW = rewriter.create( loc, rewriter.getI64IntegerAttr(rank - 1)); inputHW.push_back( /*inW=*/rewriter.create(loc, input, dimW)); Value outputShape = op.output_size(); SmallVector outputShapeSizesTorchInt; getListConstructElements(outputShape, outputShapeSizesTorchInt); // TODO: Add support for cases other than: // 1.) inH == outH and inW == outW. // 2.) outH == outW == 1 bool unitOutputSize = true; for (Value outShape : outputShapeSizesTorchInt) { int64_t outShapeInt; if (!matchPattern(outShape, m_TorchConstantInt(&outShapeInt))) { return rewriter.notifyMatchFailure( op, "output size is expected to be a constant"); } if (outShapeInt != 1) { unitOutputSize = false; break; } } Value constantOne = rewriter.create( loc, rewriter.getI64IntegerAttr(1)); Value constantZero = rewriter.create( loc, rewriter.getI64IntegerAttr(0)); Value constantFalse = rewriter.create(loc, false); Value constantTrue = rewriter.create(loc, true); Value constantNone = rewriter.create(loc); SmallVector kernelSize; for (unsigned i = 0; i < inputHW.size(); i++) { if (unitOutputSize) { BaseTensorType inputTensorType = input.getType().cast(); ArrayRef inputShape = inputTensorType.getSizes(); kernelSize.push_back(inputShape[rank - 2 + i] == kUnknownSize ? inputHW[i] : rewriter.create( loc, rewriter.getI64IntegerAttr( inputShape[rank - 2 + i]))); } else { Value cond = rewriter.create(loc, inputHW[i], outputShapeSizesTorchInt[i]); rewriter.create( loc, cond, "unimplemented: only support cases where input and output size are " "equal for non-unit output size"); Value outMinusOne = rewriter.create( loc, outputShapeSizesTorchInt[i], constantOne); kernelSize.push_back( rewriter.create(loc, inputHW[i], outMinusOne)); } } Value kernelSizeList = rewriter.create( loc, Torch::ListType::get(Torch::IntType::get(context)), kernelSize); // Currently we only support cases where input size is equal to the output // size or unit output size. For the former case, stride is always equal to // one and for the latter the stride value doesn't matter, since the kernel // size is same as the input size. Therfore, keeping the stride as one for // the latter case as well for the ease of implementation. Value strideList = rewriter.create( loc, Torch::ListType::get(Torch::IntType::get(context)), ValueRange{constantOne, constantOne}); Value paddingSizeList = rewriter.create( loc, Torch::ListType::get(Torch::IntType::get(context)), ValueRange{constantZero, constantZero}); rewriter.replaceOpWithNewOp( op, op.getType(), input, kernelSizeList, strideList, paddingSizeList, /*ceil_mode=*/constantFalse, /*count_include_pad=*/constantTrue, /*divisor_override=*/constantNone); return success(); } }; } // namespace namespace { // Decompose `aten.clamp_min` op into `aten.clamp` op. class DecomposeAtenClampMinOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenClampMinOp op, PatternRewriter &rewriter) const override { Value constantNone = rewriter.create(op.getLoc()); rewriter.replaceOpWithNewOp(op, op.getType(), op.self(), op.min(), /*max=*/constantNone); return success(); } }; } // namespace namespace { // Decompose `aten.clamp_max` op into `aten.clamp` op. class DecomposeAtenClampMaxOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenClampMaxOp op, PatternRewriter &rewriter) const override { Value constantNone = rewriter.create(op.getLoc()); rewriter.replaceOpWithNewOp(op, op.getType(), op.self(), /*min=*/constantNone, op.max()); return success(); } }; } // namespace namespace { // Decompose `aten.baddbmm` op into `aten.bmm`, `aten.mul.Scalar`, and // `aten.add.Tensor` op. class DecomposeAtenBaddbmmOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenBaddbmmOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value bmm = rewriter.create(loc, op.getType(), op.batch1(), op.batch2()); Value alphaTimesBmm = rewriter.create(loc, op.getType(), bmm, op.alpha()); Value input = op.self(); BaseTensorType inputType = input.getType().cast(); BaseTensorType resultType = op->getResult(0).getType().cast(); if (inputType.hasDtype() && resultType.hasDtype() && inputType.getDtype() != resultType.getDtype()) { input = convertTensorToDtype(rewriter, loc, input, resultType.getDtype()); } rewriter.replaceOpWithNewOp( op, op.getType(), alphaTimesBmm, op.self(), op.beta()); return success(); } }; } // namespace namespace { // Decompose `aten.floor_divide` op into `aten.div.Tensor_mode` op. class DecomposeAtenFloorDivideOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenFloorDivideOp op, PatternRewriter &rewriter) const override { Value cstStrFloor = rewriter.create(op.getLoc(), "floor"); rewriter.replaceOpWithNewOp( op, op.getType(), op.self(), op.other(), /*rounding_mode=*/cstStrFloor); return success(); } }; } // namespace namespace { // Decompose `aten.numpy_T` op into `aten.permute` op. class DecomposeAtenNumpyTOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AtenNumpyTOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); Value self = op.self(); int64_t inputRank = getTensorRank(self); SmallVector dimListElements; for (int64_t i = inputRank - 1; i >= 0; i--) dimListElements.push_back(rewriter.create( loc, rewriter.getI64IntegerAttr(i))); Value dimList = rewriter.create( loc, Torch::ListType::get(Torch::IntType::get(op->getContext())), dimListElements); rewriter.replaceOpWithNewOp(op, op.getType(), self, dimList); return success(); } }; } // namespace namespace { class DecomposeComplexOpsPass : public DecomposeComplexOpsBase { void runOnOperation() override { MLIRContext *context = &getContext(); RewritePatternSet patterns(context); ConversionTarget target(*context); target.addLegalDialect(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add>( context); target.addIllegalOp(); patterns.add>( context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); patterns.add(context); target.addIllegalOp(); target.addDynamicallyLegalOp([](AtenMatmulOp op) { int lhsRank = getTensorRank(op.self()); int rhsRank = getTensorRank(op.other()); // Make aten.matmul legal if the following condition is satisfied. return (lhsRank != 2 || rhsRank != 2) && (lhsRank != 3 || rhsRank != 3); }); patterns.add>( context); target.addIllegalOp(); patterns.add>( context); target.addIllegalOp(); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add>( context); target.addIllegalOp(); patterns.add>( context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); target.addIllegalOp(); patterns.add(context); patterns.add(context); target.addIllegalOp(); target.addIllegalOp(); patterns.add(context); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); patterns.add(context); target.addIllegalOp(); if (failed(applyPartialConversion(getOperation(), target, std::move(patterns)))) { return signalPassFailure(); } } }; } // namespace std::unique_ptr> mlir::torch::Torch::createDecomposeComplexOpsPass() { return std::make_unique(); }