# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception import torch from npcomp_torchscript.e2e_test.framework import TestUtils from npcomp_torchscript.e2e_test.registry import register_test_case from npcomp_torchscript.annotations import annotate_args, export # TODO: Support scalar !torch.int/!torch.float variants. Add support to # ReduceOpVariants to implement them in terms of the tensor-only variants + # torch.prim.NumToTensor. # TODO: This is pretty verbose. Can we have a helper to reduce # the boilerplate? # ============================================================================== class ElementwiseUnaryModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, a): return torch.tanh(a) @register_test_case(module_factory=lambda: ElementwiseUnaryModule()) def ElementwiseUnaryModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) # ============================================================================== class ElementwiseBinaryModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1], torch.float32, True), ]) def forward(self, a, b): return a * b @register_test_case(module_factory=lambda: ElementwiseBinaryModule()) def ElementwiseBinaryModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4), tu.rand(4)) # ============================================================================== class ElementwiseTernaryModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ([-1], torch.float32, True), ]) def forward(self, a, b, c): return torch.lerp(a, b, c) @register_test_case(module_factory=lambda: ElementwiseTernaryModule()) def ElementwiseTernaryModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 5), tu.rand(4, 5), tu.rand(5)) # ============================================================================== # Addition is an interesting special case of a binary op, because under the hood # it carries a third scalar "alpha" parameter, which needs special handling. class ElementwiseAddModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1], torch.float32, True), ([], torch.float32, True), ]) def forward(self, a, b): return a + b @register_test_case(module_factory=lambda: ElementwiseAddModule()) def ElementwiseAddModule_basic(module, tu: TestUtils): module.forward(tu.rand(4), tu.rand()) # ============================================================================== class ElementwiseUnsqueezeBroadcastModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1], torch.float32, True), ([], torch.float32, True), ]) def forward(self, a, b): return a * b.unsqueeze(0) @register_test_case( module_factory=lambda: ElementwiseUnsqueezeBroadcastModule()) def ElementwiseUnsqueezeBroadcastModule_basic(module, tu: TestUtils): module.forward(tu.rand(4), tu.rand()) # ============================================================================== class ElementwiseFlattenBroadcastModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1], torch.float32, True), ([], torch.float32, True), ]) def forward(self, a, b): return a * b.flatten(-1, -1) @register_test_case(module_factory=lambda: ElementwiseFlattenBroadcastModule()) def ElementwiseFlattenBroadcastModule_basic(module, tu: TestUtils): module.forward(tu.rand(6), tu.rand()) # ============================================================================== class ElementwiseReluModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.relu(x) @register_test_case(module_factory=lambda: ElementwiseReluModule()) def ElementwiseReluModule_basic(module, tu: TestUtils): module.forward(tu.rand(4, 2) - 0.5) # ============================================================================== class ElementwiseSigmoidModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.sigmoid(x) @register_test_case(module_factory=lambda: ElementwiseSigmoidModule()) def ElementwiseSigmoidModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 5)) # ==============================================================================