//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // Also available under a BSD-style license. See LICENSE. // //===----------------------------------------------------------------------===// #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/TypeSupport.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Transforms/DialectConversion.h" #include "torch-mlir/Conversion/TorchToLinalg/TorchToLinalg.h" #include "../PassDetail.h" #include "PopulatePatterns.h" #include "Utils.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Complex/IR/Complex.h" #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" #include "mlir/Dialect/Linalg/IR/Linalg.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/Matchers.h" #include "torch-mlir/Conversion/Utils/Utils.h" #include "torch-mlir/Dialect/Torch/IR/TorchDialect.h" #include "torch-mlir/Dialect/Torch/IR/TorchOps.h" #include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h" #include "torch-mlir/Dialect/Torch/Utils/Utils.h" #include using namespace mlir; using namespace mlir::torch; using namespace mlir::torch::Torch; template LogicalResult prepareArgumentsForSlicingOp(OpTy op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, SmallVector &resultShape, SmallVector &offsets, SmallVector &strides) { Location loc = op.getLoc(); auto input = adaptor.getSelf(); RankedTensorType inputType = input.getType().template cast(); Value zero = rewriter.create(loc, 0); Value one = rewriter.create(loc, 1); int64_t dim; if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) return op->emitError("unimplemented: dim is not constant"); int64_t inputRank = inputType.getRank(); dim = toPositiveDim(dim, inputRank); if (!isValidDim(dim, inputRank)) return rewriter.notifyMatchFailure(op, "dim is statically invalid"); SmallVector inputShape = getTensorSizes(rewriter, loc, input); Value dimSize = inputShape[dim]; Value torchTypeStart = op.getStart(); Value torchTypeEnd = op.getEnd(); Value builtinTypeStart = adaptor.getStart(); Value builtinTypeEnd = adaptor.getEnd(); if (torchTypeStart.getType().isa() || torchTypeEnd.getType().isa()) return rewriter.notifyMatchFailure(op, "unimplemented optional type arg"); int64_t step; if (!matchPattern(op.getStep(), m_TorchConstantInt(&step))) { if (!op.getStep().getType().template isa()) return op->emitError("unimplemented: step is not constant"); step = 1; } Value start = toPositiveValidDim(rewriter, loc, torchTypeStart, builtinTypeStart, zero, dimSize); Value end = toPositiveValidDim(rewriter, loc, torchTypeEnd, builtinTypeEnd, dimSize, dimSize); // end >= start ? end : start Value endSgeStart = rewriter.create( loc, arith::CmpIPredicate::sge, end, start); end = rewriter.create(loc, endSgeStart, end, start); Value stepIndex = rewriter.create(loc, step); // Slice logic: resultSize = floordiv(end - start + step - 1, step) resultShape = getTensorSizes(rewriter, loc, input); Value len = rewriter.create(loc, end, start); Value resultSize = rewriter.create(loc, len, stepIndex); resultSize = rewriter.create(loc, resultSize, one); resultSize = rewriter.create(loc, resultSize, stepIndex); resultShape[dim] = resultSize; strides.resize(inputType.getRank(), one); offsets.resize(inputType.getRank(), zero); offsets[dim] = start; strides[dim] = rewriter.create(loc, strides[dim], stepIndex); return success(); } namespace { class ConvertAtenFlattenUsingIntsOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenFlattenUsingIntsOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); int64_t startDim; if (!matchPattern(op.getStartDim(), m_TorchConstantInt(&startDim))) return rewriter.notifyMatchFailure(op, "start_dim must be constant"); int64_t endDim; if (!matchPattern(op.getEndDim(), m_TorchConstantInt(&endDim))) return rewriter.notifyMatchFailure(op, "end_dim must be constant"); auto type = adaptor.getSelf().getType().cast(); auto inputRank = type.getRank(); if (inputRank == 1) { // If input rank is equal to 1, then there's no scope for flattening the // input tensor. rewriter.replaceOp(op, adaptor.getSelf()); return success(); } auto resultType = getTypeConverter()->convertType(op.getType()).cast(); if (startDim < 0) startDim += inputRank; if (endDim < 0) endDim += inputRank; if (inputRank == 0) { SmallVector reassociation; if (!(startDim >= -1 && startDim <= 0 && endDim >= -1 && endDim <= 0)) return rewriter.notifyMatchFailure( op, "start_dim and end_dim must be in [-1, 0] when inputRank is 0"); rewriter.replaceOpWithNewOp( op, resultType, adaptor.getSelf(), reassociation); return success(); } if (startDim < 0 || startDim >= inputRank || endDim < 0 || endDim >= inputRank || startDim > endDim) return rewriter.notifyMatchFailure( op, "statically invalid flattening dim range"); SmallVector reassociation(resultType.getRank()); int j = 0; for (auto i : llvm::seq(0, inputRank)) { reassociation[j].push_back(i); if (i < startDim || i >= endDim) j++; } Value collapsedTensor = rewriter.create( op->getLoc(), adaptor.getSelf(), reassociation); rewriter.replaceOpWithNewOp(op, resultType, collapsedTensor); return success(); } }; } // namespace namespace { /// The `ConvertAtenViewOp` conversion pattern converts `aten.View` op to /// one `linalg.TensorExpandShape` op for all expanded dimensions and one /// `linalg.TensorCollapseShape` op for all collapsed dimensions. Cases where /// there is neither an expand or collapse of dimensions (e.g. [2, 3] -> [3, 2]) /// is not handled. Additionally, certain dynamic dimension cases rely on naive /// assumptions or aren't supported. /// TODO: Handle all the other cases of `aten.View` op. class ConvertAtenViewOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; // Helper for filling in remaining un-collapsed dims when the // input/output dim is next to the next boundary dim. Additionally // computes the size of a collapsed dynamic dim if necessary. static LogicalResult collapseToSingleDimHelper(AtenViewOp op, ConversionPatternRewriter &rewriter, int64_t collapseDim, int64_t maxCollapseDim, int64_t startExpandDim, int64_t maxExpandDim, SmallVector &collapseShape, const SmallVector &expandShape, ReassociationIndices &expandIndices) { int64_t collapseDimSize = 1; for (auto i : llvm::seq(startExpandDim, maxExpandDim)) { expandIndices.push_back(i); if (collapseDimSize == kUnknownSize) continue; int64_t expandedDimSize = expandShape[i]; if (expandedDimSize == kUnknownSize) { collapseDimSize = kUnknownSize; continue; } collapseDimSize *= expandedDimSize; } int64_t rawCollapseDimSize = collapseShape[collapseDim]; if (rawCollapseDimSize != kUnknownSize && collapseDimSize != kUnknownSize && collapseDimSize != rawCollapseDimSize) { return rewriter.notifyMatchFailure( op, "desired size is not compatible with the input tensor size"); } collapseShape[collapseDim] = collapseDimSize; return success(); } // Helper to find the minimum set of dims to collapse with the // same number of elements as that of collapseDim. This function assumes // the size of the collapsed dim is never dynamic. static LogicalResult minimallyCollapseDimHelper( AtenViewOp op, ConversionPatternRewriter &rewriter, int64_t collapseDim, int64_t maxCollapseDim, int64_t startExpandDim, int64_t maxExpandDim, SmallVector &collapseShape, SmallVector &expandShape, ReassociationIndices &collapseIndices, ReassociationIndices &expandIndices) { int64_t collapseDimSize = collapseShape[collapseDim]; int64_t expandedSize = 1; int64_t collapsedSize = collapseDimSize; int64_t expandIndex = startExpandDim; int64_t collapseIndex = collapseDim + 1; if (collapseDimSize == kUnknownSize) { if (llvm::all_of(collapseShape, [](int64_t value) { return value == kUnknownSize; }) && llvm::all_of(expandShape, [](int64_t value) { return value == kUnknownSize; })) { for (size_t i = 0; i < collapseShape.size(); i++) { collapseIndices.push_back(i); } for (size_t i = 0; i < expandShape.size(); i++) { expandIndices.push_back(i); } return success(); } } while (expandIndex != maxExpandDim || collapseIndex != maxCollapseDim) { if (expandIndex != maxExpandDim && expandedSize <= collapsedSize) { int64_t expandDimSize = expandShape[expandIndex]; if (expandDimSize != kUnknownSize) { expandedSize *= expandDimSize; } expandIndices.push_back(expandIndex); expandIndex++; } else if (collapseIndex != maxCollapseDim && collapsedSize < expandedSize) { collapseDimSize = collapseShape[collapseIndex]; if (collapseDimSize != kUnknownSize) { collapsedSize *= collapseDimSize; } collapseIndices.push_back(collapseIndex); collapseIndex++; } if (expandedSize == collapsedSize) return success(); } return rewriter.notifyMatchFailure( op, "total number of elements mismatch in the expansion"); } static void solveDynamicSize(SmallVector &inputShape, SmallVector &outputShape) { int64_t inputProduct = 1; int64_t outputProduct = 1; int64_t inputDynamicValues = 0; int64_t outputDynamicValues = 0; for (int64_t value : inputShape) { if (value == -1) { ++inputDynamicValues; } else { inputProduct *= value; } } for (int64_t value : outputShape) { if (value == -1) { ++outputDynamicValues; } else { outputProduct *= value; } } if (inputDynamicValues + outputDynamicValues == 1) { if (inputDynamicValues) { int64_t missingValue = outputProduct / inputProduct; for (size_t i = 0; i < inputShape.size(); i++) { if (inputShape[i] == -1) { inputShape[i] = missingValue; break; } } } else { int64_t missingValue = inputProduct / outputProduct; for (size_t i = 0; i < outputShape.size(); i++) { if (outputShape[i] == -1) { outputShape[i] = missingValue; break; } } } } } LogicalResult matchAndRewrite(AtenViewOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); Location loc = op.getLoc(); Value input = adaptor.getSelf(); auto inputType = input.getType().cast(); SmallVector inputShape = makeShapeTorchCompatible(inputType.getShape()); int64_t inputRank = inputType.getRank(); const TypeConverter *typeConverter = getTypeConverter(); auto resultType = typeConverter->convertType(op.getType()).cast(); int64_t resultRank = resultType.getRank(); if (resultRank == 0) return rewriter.notifyMatchFailure(op, "result shape of rank 0 is invalid"); // TODO: add support for case inputRank 0 expanded to size 1 if (inputRank == 0) return rewriter.notifyMatchFailure( op, "unimplemented: input rank 0 is not supported"); // Extract the desired output size as a list of integers. This list should // have been created using the operation `torch.prim.ListConstruct`. SmallVector outputSizeTorchInt; if (!getListConstructElements(op.getSize(), outputSizeTorchInt)) { return rewriter.notifyMatchFailure(op, "unimplemented: the target size is " "not constructed from ListConstruct"); } SmallVector outputSizeInt = getTypeConvertedValues( rewriter, loc, typeConverter, outputSizeTorchInt); if (resultRank != (int64_t)outputSizeInt.size()) { return rewriter.notifyMatchFailure( op, "desired size list length mismatches with the result type rank"); } // Currently, we only handle the cases where each dimension is either // being expanded or collapsed. We do not handle cases where it's neither // collapsing nor expanding like view of [2,3] for 3x2 tensor. // TODO: For neither collapsing nor expanding, we could find a intermediate // shape to collapse and then expanded to the target shape. Like [2,3] => // [6] => [3, 2]. // Iterate through the view op size list to do the following: // // 1. Combine output size list and input tensor type info to get the most // static outputShape. // // 2. Mark dims in unchangedDims for size list items where the output dim // size comes from a `torch.aten.size.int(inputTensor, inputDim)`. We // naively assume this means the corresponding dimension is not expanded or // collapsed. Note this may technically not always be true. // TODO: think of a way better way to at least detect when this assumption // is violated for the cases of dynamic dimensions. SmallVector outputShape(resultRank, kUnknownSize); SmallVector unchangedDims; std::optional inferredDimension; for (auto en : llvm::enumerate(outputSizeTorchInt)) { int64_t inputDim; int64_t size; int64_t outputDim = en.index(); // Match torch.aten.size.int(inputTensor, inputDim) with constant inputDim if (matchPattern(en.value(), m_TorchTensorSizeInt(op.getSelf(), &inputDim))) { unchangedDims.emplace_back(); unchangedDims.back().push_back(inputDim); unchangedDims.back().push_back(outputDim); if (!inputType.isDynamicDim(inputDim)) { outputShape[outputDim] = inputShape[inputDim]; continue; } } else if (matchPattern(en.value(), m_TorchConstantInt(&size))) { if (size != -1) { outputShape[outputDim] = size; continue; } if (inferredDimension.has_value()) { return rewriter.notifyMatchFailure( op, "at most one element in size list is allowed to be -1"); } inferredDimension = outputDim; } } // Mark the end of the input/output shapes unchangedDims.emplace_back(); unchangedDims.back().push_back(inputRank); unchangedDims.back().push_back(resultRank); // Use static information of input tensor to determine size of inferred // dimension in output shape. // // If there is an inferred dimension and that is the only dimension // in the output shape (i.e. the tensor is getting fully flattened), // then we don't need to analyze the static information of the input // shape since the reassociation of dimensions only requires rank // information. if (inferredDimension.has_value() && outputShape.size() > 1) { if (llvm::count(outputShape, kUnknownSize) != 1 || llvm::count(inputShape, kUnknownSize) != 0) { return rewriter.notifyMatchFailure( op, "unimplemented: an inferred dimension is only supported when there " "is enough static shape information to determine its size, or when " "the input tensor is being flattened to a single dimension"); } auto productReduceKnownSizes = [](const ArrayRef sizes) { auto knownSizes = llvm::make_filter_range( sizes, [](int64_t val) { return val != kUnknownSize; }); return std::accumulate(knownSizes.begin(), knownSizes.end(), /*init=*/1, std::multiplies()); }; int64_t numOfElements = productReduceKnownSizes(inputShape); int64_t outputKnownNumOfElements = productReduceKnownSizes(outputShape); if (numOfElements % outputKnownNumOfElements != 0) { return rewriter.notifyMatchFailure( op, "number of elements in input tensor must be divisible by " "product of non-inferred dimensions in size list"); } outputShape[*inferredDimension] = numOfElements / outputKnownNumOfElements; } SmallVector inputSize = getTensorSizes(rewriter, loc, input); ArrayRef outputShapeInt = llvm::ArrayRef(outputSizeInt); ArrayRef inputShapeInt = llvm::ArrayRef(inputSize); // Association indices for expand/collapse ops. These two vectors // are populated such that two entries at the same index corresponds // to an expand or collapse. For example, // // inputAssociations: [[0, 1], [2]] // outputAssociations: [[0], [1, 2, 3]] // // indicates that the first two dims of the input tensor // are collapsed into the first dim of the output, and the // third dim of the input is expanded into the last three dims // of the output. SmallVector inputAssociations; SmallVector outputAssociations; SmallVector inputShapeVec = llvm::to_vector(inputShape); solveDynamicSize(inputShapeVec, outputShape); // The for loop does the following: // 1. Attempt to match the indices from inputDim and outputDim to the next // boundary found from `torch.aten.size.int(inputTensor, inputDim)`, or // until (inputRank, resultRank) if there is no such op. Look at the first // dimension of the input and output and collapse the larger one by finding // a minimal set of opposing indices with the same number of elements. If // the number of dims to the next boundary is 1, then we assume all // remaining opposing dims must collapse into it. // 2. For handling of dynamic dimensions, we first assume they are only // split if we can easily compute the correct size. // e.g. [2, -1] -> [2, 3, 4] // This mainly happens at the edges of boundaries. Otherwise we try to match // the dynamic dimension with the one across from it and give up if we can't // reason about how the dimensions are associated. // e.g. [-1, -1] -> [2, 3, 4] // 3. Set inputShapeVec and outputShape following the requirements by // tensor.expand_shape verification code: // a. As long as one or more of the related dimensions in the expanded // shape is dynamic the collapsed dimension is dynamic. // b. If all of the related dimensions are static, the collapsed // dimension must be static. In other words, if a collapsed dimension is // dynamic, at least one of the related dimensions need to be dynamic. int64_t inputDim = 0, outputDim = 0; for (auto boundary : unchangedDims) { // We assume dims specified by AtenSizeInt ops are unchanged int64_t nextUnchangedInput = boundary[0]; int64_t nextUnchangedOutput = boundary[1]; bool hasDynamic = false; while (inputDim < nextUnchangedInput && outputDim < nextUnchangedOutput) { inputAssociations.emplace_back(); outputAssociations.emplace_back(); // outputDim is next to the boundary if (outputDim == nextUnchangedOutput - 1) { if (hasDynamic && inputDim != nextUnchangedInput - 1) { return rewriter.notifyMatchFailure( op, "found ambiguous collapse of dynamic input sizes (e.g. " "[-1, -1, -1] -> [-1, -1])"); } outputAssociations.back().push_back(outputDim); if (failed(collapseToSingleDimHelper( op, rewriter, outputDim, nextUnchangedOutput, inputDim, nextUnchangedInput, outputShape, inputShapeVec, inputAssociations.back()))) return failure(); outputDim = nextUnchangedOutput; inputDim = nextUnchangedInput; continue; } // inputDim is next to the boundary if (inputDim == nextUnchangedInput - 1) { if (hasDynamic && inputShape[inputDim] == kUnknownSize) { return rewriter.notifyMatchFailure( op, "found ambiguous expand of dynamic sizes (e.g. [-1, -1] -> " "[-1, -1, -1])"); } inputAssociations.back().push_back(inputDim); if (failed(collapseToSingleDimHelper( op, rewriter, inputDim, nextUnchangedInput, outputDim, nextUnchangedOutput, inputShapeVec, outputShape, outputAssociations.back()))) return failure(); outputDim = nextUnchangedOutput; inputDim = nextUnchangedInput; continue; } int64_t inputMatchingDimSize = inputShapeVec[inputDim]; int64_t outputMatchingDimSize = outputShape[outputDim]; // If the input is dynamic, first assume it is not split if (inputMatchingDimSize == kUnknownSize) { checkDimEqualHelper(rewriter, loc, inputShapeInt[inputDim], outputShapeInt[outputDim]); outputShape[outputDim] = kUnknownSize; inputAssociations.back().push_back(inputDim++); outputAssociations.back().push_back(outputDim++); hasDynamic = true; continue; } // inputDim size is larger; try to collapse onto it if (inputMatchingDimSize >= outputMatchingDimSize) { inputAssociations.back().push_back(inputDim); if (failed(minimallyCollapseDimHelper( op, rewriter, inputDim, nextUnchangedInput, outputDim, nextUnchangedOutput, inputShapeVec, outputShape, inputAssociations.back(), outputAssociations.back()))) { return failure(); } hasDynamic = false; outputDim = outputAssociations.back().back() + 1; inputDim = inputAssociations.back().back() + 1; continue; } // outputDim is larger; try to collapse onto it outputAssociations.back().push_back(outputDim); if (failed(minimallyCollapseDimHelper( op, rewriter, outputDim, nextUnchangedOutput, inputDim, nextUnchangedInput, outputShape, inputShapeVec, outputAssociations.back(), inputAssociations.back()))) { return failure(); } hasDynamic = false; inputDim = inputAssociations.back().back() + 1; outputDim = outputAssociations.back().back() + 1; continue; } if (inputDim != nextUnchangedInput) { hasDynamic = true; if (inputAssociations.size() < 1) { inputAssociations.emplace_back(); outputAssociations.emplace_back(); } inputAssociations.back().push_back(inputDim++); outputAssociations.back().push_back(outputDim++); continue; } // Append the associations for the dims matching `aten.size.int` if (nextUnchangedInput != inputRank && nextUnchangedOutput != resultRank) { inputAssociations.emplace_back(); outputAssociations.emplace_back(); inputAssociations.back().push_back(inputDim++); outputAssociations.back().push_back(outputDim++); } } // Check if the shapes already match up to dynamic sizes. If so, we can just // cast as the result type because the previous loop sets up the necessary // dim checks in case of dynamic sizes. if (llvm::all_of( inputAssociations, [](ReassociationIndices indices) { return indices.size() == 1; }) && llvm::all_of(outputAssociations, [](ReassociationIndices indices) { return indices.size() == 1; })) { rewriter.replaceOpWithNewOp(op, resultType, input); return success(); } Type adjustedResultType = RankedTensorType::get( makeShapeLLVMCompatible(outputShape), resultType.getElementType()); Type adjustedInputType = RankedTensorType::get( makeShapeLLVMCompatible(inputShapeVec), resultType.getElementType()); Value castedInput = rewriter.create(loc, adjustedInputType, input); std::optional expandedInput; std::optional collapsedInput; if (llvm::any_of(inputAssociations, [](ReassociationIndices indices) { return indices.size() > 1; })) { SmallVector intermediateShape; for (auto i : llvm::seq(0, (int)outputAssociations.size())) { int sum = 1; for (auto j : llvm::seq(0, (int)outputAssociations[i].size())) { if (outputShape[outputAssociations[i][j]] < 0) { sum = kUnknownSize; break; } sum *= outputShape[outputAssociations[i][j]]; } intermediateShape.push_back(sum); } Type intermediateResultType = RankedTensorType::get(makeShapeLLVMCompatible(intermediateShape), resultType.getElementType()); expandedInput = rewriter .create(loc, intermediateResultType, castedInput, inputAssociations) .getResult(); } if (llvm::any_of(outputAssociations, [](ReassociationIndices indices) { return indices.size() > 1; })) { collapsedInput = rewriter .create( loc, adjustedResultType, expandedInput.has_value() ? expandedInput.value() : castedInput, outputAssociations) .getResult(); } Value result = collapsedInput.has_value() ? collapsedInput.value() : expandedInput.value(); rewriter.replaceOpWithNewOp(op, resultType, result); return success(); } }; } // namespace namespace { class ConvertAtenSqueezeOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenSqueezeOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); Location loc = op.getLoc(); Value input = adaptor.getSelf(); auto inputType = input.getType().cast(); int64_t inputRank = inputType.getRank(); const TypeConverter *typeConverter = getTypeConverter(); auto resultType = typeConverter->convertType(op.getType()).cast(); int64_t resultRank = resultType.getRank(); if (inputRank == 0) { return rewriter.notifyMatchFailure( op, "zero input rank should have been handled by the folder"); } // In case the operand tensor type is statically shaped with all dimensions // being unit extent, it will be collapsed to a 0-D tensor. if (resultRank == 0) { SmallVector reassociation; rewriter.replaceOpWithNewOp( op, resultType, input, reassociation); return success(); } // All the static size-1 dimensions at the beginning(going from higher to // lower dimensions) will be collapsed into the first dynamic or first non // size-1 static dimension. All the other static size-1 dimensions will be // collapsed into its previous dynamic or non size-1 static dimension. SmallVector reassociation(resultRank); bool isSqueezed = false; int64_t headOnesCount = 0; while (headOnesCount < inputRank && inputType.getDimSize(headOnesCount) == 1) { isSqueezed = true; reassociation[0].push_back(headOnesCount++); } // TODO: Add support for size-1 dynamic dimensions. Value one = rewriter.create( loc, rewriter.getIntegerAttr(rewriter.getIndexType(), 1)); int64_t j = -1; for (auto i : llvm::seq(headOnesCount, inputRank)) { if (inputType.isDynamicDim(i)) { // Make sure that size-1 dynamic dimension does not exist. Value dimSize = getDimOp(rewriter, loc, input, i); Value dimSizeNotOne = rewriter.create( loc, arith::CmpIPredicate::ne, dimSize, one); rewriter.create( loc, dimSizeNotOne, rewriter.getStringAttr( "unimplemented: size 1 dynamic dimension is not supported")); ++j; } else if (inputType.getDimSize(i) != 1) { ++j; } else { // `isSqueezed` checks if the operand tensor type contains at least one // unit dimension. isSqueezed = true; } if (j == resultRank) break; reassociation[j].push_back(i); } // Make sure that result type rank is compatible with the squeezed size. if (j != resultRank - 1) return rewriter.notifyMatchFailure( op, "expected output size mismatches with the result type rank"); if (isSqueezed) { rewriter.replaceOpWithNewOp( op, resultType, input, reassociation); } else { // If the operand tensor type does not have any unit dimension, // `aten.squeeze` will behave as an identity operation. rewriter.replaceOpWithNewOp(op, resultType, input); } return success(); } }; } // namespace namespace { class ConvertAtenSqueezeDimOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenSqueezeDimOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); Value input = adaptor.getSelf(); auto inputType = input.getType().cast(); int64_t inputRank = inputType.getRank(); if (inputRank == 0) { return rewriter.notifyMatchFailure( op, "zero input rank should have been handled by the folder"); } int64_t dim; if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) return rewriter.notifyMatchFailure(op, "dim must be constant"); dim = toPositiveDim(dim, inputRank); if (!isValidDim(dim, inputRank)) return rewriter.notifyMatchFailure(op, "dim is statically invalid"); // TODO: Handle the case where the dim(th) dimension is dynamic. if (inputType.isDynamicDim(dim)) { return rewriter.notifyMatchFailure( op, "unimplemented: dim(th) dimension is not expected to be dynamic"); } const TypeConverter *typeConverter = getTypeConverter(); auto resultType = typeConverter->convertType(op.getType()).cast(); int64_t resultRank = resultType.getRank(); // If the dim(th) dimension of operand tensor type is not statically unit, // `aten.squeeze` will behave as an identity operation. if (inputType.getDimSize(dim) != 1) { rewriter.replaceOpWithNewOp(op, resultType, input); return success(); } SmallVector reassociationMap(resultRank); bool alreadyCrossedSqueezedDim = false; for (int i = 0; i != resultRank; i++) { if (alreadyCrossedSqueezedDim) { reassociationMap[i].push_back(i + 1); } else { reassociationMap[i].push_back(i); if (dim != 0 && i != dim - 1) continue; alreadyCrossedSqueezedDim = true; if (dim == 0) reassociationMap[0].push_back(1); if (i == dim - 1) reassociationMap[i].push_back(dim); } } // Note: In case the operand tensor type is of unit rank and is statically // shaped with unit dimension, the `reassociationMap` will be empty and the // input will be collapsed to a 0-D tensor. rewriter.replaceOpWithNewOp(op, resultType, input, reassociationMap); return success(); } }; } // namespace namespace { class ConvertAtenUnsqueezeOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenUnsqueezeOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); int64_t dim; if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) return rewriter.notifyMatchFailure(op, "dim must be constant"); auto inputRank = adaptor.getSelf().getType().cast().getRank(); dim = toPositiveDim(dim, inputRank + 1); if (!isValidDim(dim, inputRank + 1)) return rewriter.notifyMatchFailure(op, "dim is statically invalid"); SmallVector reassociationMap(inputRank); // From the perspective of the reassociation map, the situation of // unsqueezing before or after the last dimension is symmetrical. // Normalize it to the "before" case. // The 0 case is special here, since there is no last dimension to insert // before -- we simply rely on the loop below iterating 0 times. if (dim == inputRank && inputRank != 0) dim = inputRank - 1; bool alreadyCrossedExpandedDim = false; for (int i = 0; i != inputRank; i++) { if (alreadyCrossedExpandedDim) { reassociationMap[i].push_back(i + 1); } else { reassociationMap[i].push_back(i); if (i == dim) { reassociationMap[i].push_back(i + 1); alreadyCrossedExpandedDim = true; } } } auto resultType = getTypeConverter() ->convertType(op->getResult(0).getType()) .cast(); rewriter.replaceOpWithNewOp( op, resultType, adaptor.getSelf(), reassociationMap); return success(); } }; } // namespace namespace { class ConvertAtenTransposeIntOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenTransposeIntOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); int64_t dim0; if (!matchPattern(op.getDim0(), m_TorchConstantInt(&dim0))) return rewriter.notifyMatchFailure(op, "dim0 must be constant"); int64_t dim1; if (!matchPattern(op.getDim1(), m_TorchConstantInt(&dim1))) return rewriter.notifyMatchFailure(op, "dim1 must be constant"); auto inVector = adaptor.getSelf(); auto inType = inVector.getType().cast(); auto inputRank = inType.getRank(); auto outType = getTypeConverter() ->convertType(op->getResult(0).getType()) .cast(); auto elementType = inType.getElementType(); dim0 = toPositiveDim(dim0, inputRank); if (!isValidDim(dim0, inputRank)) return rewriter.notifyMatchFailure(op, "dim0 out of range"); dim1 = toPositiveDim(dim1, inputRank); if (!isValidDim(dim1, inputRank)) return rewriter.notifyMatchFailure(op, "dim1 out of range"); auto loc = op.getLoc(); SmallVector outputDims; for (auto i = 0; i < inputRank; i++) outputDims.push_back(getDimOp(rewriter, loc, adaptor.getSelf(), i)); std::swap(outputDims[dim0], outputDims[dim1]); Value outVector = rewriter.create( loc, getAsOpFoldResult(outputDims), elementType); SmallVector idExprs; SmallVector swapExprs; for (auto i = 0; i < inputRank; i++) idExprs.push_back(getAffineDimExpr(i, rewriter.getContext())); for (auto i = 0; i < inputRank; i++) { if (i == dim0) swapExprs.push_back(idExprs[dim1]); else if (i == dim1) swapExprs.push_back(idExprs[dim0]); else swapExprs.push_back(idExprs[i]); } SmallVector indexingMaps = { AffineMap::get(inputRank, 0, idExprs, op.getContext()), AffineMap::get(inputRank, 0, swapExprs, op.getContext())}; SmallVector iteratorTypes( inputRank, utils::IteratorType::parallel); auto transpose = rewriter .create( loc, outVector.getType(), inVector, outVector, indexingMaps, iteratorTypes, [](OpBuilder &b, Location loc, ValueRange args) { b.create(loc, args[0]); }) .getResult(0); rewriter.replaceOpWithNewOp(op, outType, transpose); return success(); } }; } // namespace namespace { class ConvertAtenPermuteOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenPermuteOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); SmallVector dimensions; if (!matchPattern(op.getDims(), m_TorchListOfConstantInts(dimensions))) return rewriter.notifyMatchFailure(op, "all dimensions must be constant"); Value inVector = adaptor.getSelf(); auto inType = inVector.getType().cast(); int64_t inputRank = inType.getRank(); auto outType = getTypeConverter() ->convertType(op->getResult(0).getType()) .cast(); Type elementType = inType.getElementType(); // Check if the dimensions are a valid constants. int64_t numDimensions = dimensions.size(); if (inputRank != numDimensions) return rewriter.notifyMatchFailure( op, "size of `dims` must be equal to the rank of the input"); for (unsigned i = 0; i < numDimensions; i++) { if (dimensions[i] < 0) dimensions[i] = toPositiveDim(dimensions[i], inputRank); if (!isValidDim(dimensions[i], inputRank)) return rewriter.notifyMatchFailure(op, "dimension out of range"); } Location loc = op.getLoc(); SmallVector outputDims; for (unsigned i = 0; i < inputRank; i++) outputDims.push_back(getDimOp(rewriter, loc, inVector, dimensions[i])); Value outVector = rewriter.create( loc, getAsOpFoldResult(outputDims), elementType); SmallVector idExprs; SmallVector swapExprs; for (unsigned i = 0; i < inputRank; i++) idExprs.push_back(getAffineDimExpr(i, rewriter.getContext())); for (unsigned i = 0; i < inputRank; i++) swapExprs.push_back(idExprs[dimensions[i]]); AffineMap inputMap = AffineMap::get(inputRank, /*symbolCount=*/0, idExprs, op->getContext()); AffineMap outputMap = AffineMap::get(inputRank, /*symbolCount=*/0, swapExprs, op->getContext()); SmallVector indexingMaps{inputMap, outputMap}; SmallVector iteratorTypes( inputRank, utils::IteratorType::parallel); auto transpose = rewriter .create( loc, outVector.getType(), inVector, outVector, indexingMaps, iteratorTypes, [](OpBuilder &b, Location loc, ValueRange args) { b.create(loc, args[0]); }) .getResult(0); rewriter.replaceOpWithNewOp(op, outType, transpose); return success(); } }; } // namespace namespace { class ConvertAtenSliceTensorOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenSliceTensorOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); Location loc = op.getLoc(); const TypeConverter *typeConverter = getTypeConverter(); auto input = adaptor.getSelf(); RankedTensorType resultType = typeConverter->convertType(op->getResult(0).getType()) .cast(); SmallVector resultShape; SmallVector offsets; SmallVector strides; if (failed(prepareArgumentsForSlicingOp( op, adaptor, rewriter, resultShape, offsets, strides))) { return failure(); } Value result = rewriter.create( loc, input, offsets, resultShape, strides); rewriter.replaceOpWithNewOp(op, resultType, result); return success(); } }; } // namespace namespace { class ConvertAtenCatOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenCatOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); Location loc = op.getLoc(); const TypeConverter *typeConverter = getTypeConverter(); // Collect all the tensors to be concatenated. auto tensorList = op.getTensors(); SmallVector tensorsTorchType; if (!getListConstructElements(tensorList, tensorsTorchType)) return op.emitError( "unimplemented: the tensor list is not from list construct"); auto tensors = getTypeConvertedValues(rewriter, loc, typeConverter, tensorsTorchType); RankedTensorType newResultType = typeConverter->convertType(op.getType()).cast(); auto outElemType = newResultType.getElementType(); auto dtypePromoteBody = [&](OpBuilder &builder, Location loc, ValueRange payloadArgs) { Value elem = convertScalarToDtype(builder, loc, payloadArgs[0], outElemType); builder.create(loc, elem); }; for (size_t i = 0; i < tensors.size(); ++i) { tensors[i] = torch_to_linalg::createElementwiseLinalgGeneric( rewriter, loc, {tensors[i]}, outElemType, dtypePromoteBody); } int rank = newResultType.getRank(); Value dimValue = op.getDim(); int64_t dim; if (!matchPattern(dimValue, m_TorchConstantInt(&dim))) return op.emitError("unimplemented: dim is not constant"); dim = toPositiveDim(dim, rank); if (!isValidDim(dim, rank)) return rewriter.notifyMatchFailure(op, "dim is statically invalid"); SmallVector offsets, sizes, strides; sizes.reserve(rank); strides.resize(rank, rewriter.create(loc, 1)); offsets.resize(rank, rewriter.create(loc, 0)); for (int i = 0; i < rank; ++i) sizes.push_back(rewriter.createOrFold(loc, tensors[0], i)); // Calculate the size of the `dim` result dimension by adding the dim size // of each tensor together. Value resultDimSize = sizes[dim]; Value dimIndex = rewriter.createOrFold( loc, rewriter.getIndexAttr(dim)); for (auto tensor : ArrayRef(tensors).drop_front()) { auto size = rewriter.createOrFold(loc, tensor, dimIndex); resultDimSize = rewriter.createOrFold(loc, resultDimSize, size); } sizes[dim] = resultDimSize; auto toOpFoldResult = [](Value v) -> OpFoldResult { auto op = v.getDefiningOp(); if (!op) return v; return op.getValue(); }; Value result = rewriter.create( loc, getAsOpFoldResult(sizes), newResultType.getElementType()); for (auto tensor : tensors) { SmallVector sizes = getTensorSizes(rewriter, loc, tensor); result = rewriter.createOrFold( loc, tensor, result, llvm::to_vector(llvm::map_range(offsets, toOpFoldResult)), llvm::to_vector(llvm::map_range(sizes, toOpFoldResult)), llvm::to_vector(llvm::map_range(strides, toOpFoldResult))); offsets[dim] = rewriter.createOrFold(loc, offsets[dim], sizes[dim]); } rewriter.replaceOpWithNewOp(op, newResultType, result); return success(); } }; } // namespace namespace { class ConvertAtenBroadcastToOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenBroadcastToOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); Value self = adaptor.getSelf(); SmallVector inShape; if (!getListConstructElements(adaptor.getSize(), inShape)) { return rewriter.notifyMatchFailure( op, "unimplemented: the size list is not from list construct"); } // For dynamic input dimension we need to use the `broadcastToShape` // which in this case is `inShapeConverted` because this shape will yield // us the dimension size of the output. SmallVector useBroadcastToShape; for (auto x : inShape) { int64_t dim; if (!matchPattern(x, m_TorchConstantInt(&dim))) { Operation *defOp = x.getDefiningOp(); if (isa(defOp)) useBroadcastToShape.push_back(true); else useBroadcastToShape.push_back(false); } else { useBroadcastToShape.push_back(false); } } SmallVector inShapeConverted = getTypeConvertedValues( rewriter, op.getLoc(), getTypeConverter(), inShape); Value result; if (failed(torch_to_linalg::broadcastToGivenShape(op, rewriter, self, inShapeConverted, result, useBroadcastToShape))) { return rewriter.notifyMatchFailure( op, "unable to perform broadcast operation"); } Type newResultType = getTypeConverter()->convertType(op.getType()); rewriter.replaceOpWithNewOp(op, newResultType, result); return success(); } }; } // namespace namespace { class ConvertAtenContiguousOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenContiguousOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); Type resultType = getTypeConverter()->convertType(op.getType()); rewriter.replaceOpWithNewOp(op, resultType, adaptor.getSelf()); return success(); } }; } // namespace namespace { class ConvertAtenCopyOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenCopyOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); Location loc = op.getLoc(); Value self = adaptor.getSelf(); Value src = adaptor.getSrc(); RankedTensorType selfType = self.getType().cast(); // The non_blocking should be a constant `False`. bool nonBlocking; if (!matchPattern(op.getNonBlocking(), m_TorchConstantBool(&nonBlocking))) { return rewriter.notifyMatchFailure( op, "unimplemented: non_blocking must be a constant"); } else if (nonBlocking) { return rewriter.notifyMatchFailure( op, "unimplemented: non_blocking is expected to be false"); } // The size of the src tensor can be different from the self but should be // broadcastable. Therefore, broadcasting the src tensor to match the size // of the self tensor. SmallVector selfSizes = getTensorSizes(rewriter, loc, self); for (unsigned i = 0; i < selfSizes.size(); i++) selfSizes[i] = castIndexToInt64(rewriter, loc, selfSizes[i]); Value broadcastedSrc; if (failed(torch_to_linalg::broadcastToGivenShape( op, rewriter, src, selfSizes, broadcastedSrc))) { return rewriter.notifyMatchFailure( op, "unable to perform broadcast operation"); } AffineMap id = AffineMap::getMultiDimIdentityMap(selfType.getRank(), rewriter.getContext()); SmallVector iteratorTypes( selfType.getRank(), utils::IteratorType::parallel); Value result = rewriter .create( loc, /*resultType=*/selfType, /*inputs=*/broadcastedSrc, /*outputs=*/self, /*indexingMaps=*/llvm::ArrayRef({id, id}), /*iteratorTypes=*/iteratorTypes, [](OpBuilder &b, Location loc, ValueRange args) { Value result = args[0]; if (args[0].getType() != args[1].getType()) { result = convertScalarToDtype(b, loc, args[0], args[1].getType()); } b.create(loc, result); }) ->getResult(0); Type resultType = getTypeConverter()->convertType(op.getType()); rewriter.replaceOpWithNewOp(op, resultType, result); return success(); } }; } // namespace namespace { class ConvertAtenSliceScatterOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenSliceScatterOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); Location loc = op.getLoc(); const TypeConverter *typeConverter = getTypeConverter(); auto input = adaptor.getSelf(); RankedTensorType resultType = typeConverter->convertType(op->getResult(0).getType()) .cast(); SmallVector resultShape; SmallVector offsets; SmallVector strides; if (failed(prepareArgumentsForSlicingOp( op, adaptor, rewriter, resultShape, offsets, strides))) { return failure(); } Value src = adaptor.getSrc(); auto srcType = src.getType().cast(); int64_t srcRank = srcType.getRank(); SmallVector srcAbstractSizes(srcRank, kUnknownSize); auto abstractSrcType = RankedTensorType::get( makeShapeLLVMCompatible(srcAbstractSizes), srcType.getElementType()); Value abstractSrc = rewriter.create(loc, abstractSrcType, src); Value result = rewriter.create( loc, abstractSrc, input, offsets, resultShape, strides); rewriter.replaceOpWithNewOp(op, resultType, result); return success(); } }; } // namespace namespace { class ConvertAtenViewAsComplexOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenViewAsComplexOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); Location loc = op.getLoc(); const TypeConverter *typeConverter = getTypeConverter(); MLIRContext *context = rewriter.getContext(); auto input = adaptor.getSelf(); RankedTensorType resultType = typeConverter->convertType(op.getType()).cast(); auto elementType = resultType.getElementType(); SmallVector resultShape; for (int64_t i = 0; i < resultType.getRank(); i++) { auto currentDimSize = rewriter.create(loc, input, i); resultShape.push_back(currentDimSize); } Value outTensor = rewriter.create( loc, getAsOpFoldResult(resultShape), elementType); SmallVector outputExpr; for (unsigned i = 0; i < resultType.getRank(); i++) { outputExpr.push_back(getAffineDimExpr(i, context)); } Value constantZero = getConstant(rewriter, loc, 0, mlir::IndexType::get(context)); Value constantOne = getConstant(rewriter, loc, 1, mlir::IndexType::get(context)); AffineMap outputMap = AffineMap::get(resultType.getRank(), 0, outputExpr, op->getContext()); SmallVector indexingMaps{outputMap}; SmallVector iteratorTypes( resultType.getRank(), utils::IteratorType::parallel); auto complexVar = rewriter .create( loc, outTensor.getType(), ValueRange{}, outTensor, indexingMaps, iteratorTypes, [&](OpBuilder &b, Location loc, ValueRange args) { SmallVector indicesZero; SmallVector indicesOne; for (int i = 0; i < resultType.getRank(); i++) { indicesZero.push_back(b.create(loc, i)); indicesOne.push_back(b.create(loc, i)); } indicesZero.push_back(constantZero); indicesOne.push_back(constantOne); Value realVal = b.create(loc, input, indicesZero); Value imagVal = b.create(loc, input, indicesOne); Value complexVal = b.create( loc, elementType, realVal, imagVal); b.create(loc, complexVal); }) .getResult(0); rewriter.replaceOpWithNewOp(op, resultType, complexVar); return success(); } }; } // namespace namespace { class ConvertAtenViewAsRealOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenViewAsRealOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); Location loc = op.getLoc(); const TypeConverter *typeConverter = getTypeConverter(); MLIRContext *context = rewriter.getContext(); auto input = adaptor.getSelf(); RankedTensorType resultType = typeConverter->convertType(op.getType()).cast(); RankedTensorType inputType = input.getType().cast(); auto inputElementType = getElementTypeOrSelf(input.getType()); if (!inputElementType.isa()) { return op.emitError("only ComplexType is allowed as input type"); } Type elementType = resultType.getElementType(); // returned real tensor has a size increase, where the last dim has size 2 SmallVector resultShape = tensor::getMixedSizes(rewriter, loc, input); resultShape.push_back( rewriter.createOrFold(loc, 2)); Value outTensor = rewriter.create(loc, resultShape, elementType); SmallVector inputExpr; for (unsigned i = 0; i < resultType.getRank() - 1; i++) { inputExpr.push_back(getAffineDimExpr(i, context)); } AffineMap inputMap = AffineMap::get(resultType.getRank(), 0, inputExpr, op->getContext()); inputExpr.push_back(getAffineDimExpr(resultType.getRank() - 1, context)); AffineMap outputMap = AffineMap::get(resultType.getRank(), 0, inputExpr, op->getContext()); SmallVector indexingMaps{inputMap, outputMap}; SmallVector iteratorTypes(resultType.getRank(), utils::IteratorType::parallel); Value constantZero = getConstant(rewriter, loc, 0, mlir::IndexType::get(context)); auto realVar = rewriter .create( loc, outTensor.getType(), input, outTensor, indexingMaps, iteratorTypes, [&](OpBuilder &b, Location loc, ValueRange args) { Value realVal = b.create(loc, elementType, args[0]); Value imagVal = b.create(loc, elementType, args[0]); Value lastIndex = b.create(loc, inputType.getRank()); Value cmpResult = b.create( loc, arith::CmpIPredicate::eq, lastIndex, constantZero); Value yieldValue = b.create( loc, cmpResult, realVal, imagVal); b.create(loc, yieldValue); }) .getResult(0); rewriter.replaceOpWithNewOp(op, resultType, realVar); return success(); } }; } // namespace void mlir::torch::torch_to_linalg::populateDataMovementPatternsAndLegality( TypeConverter &typeConverter, RewritePatternSet &patterns, ConversionTarget &target) { MLIRContext *context = patterns.getContext(); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); }