# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # Also available under a BSD-style license. See LICENSE. """ Example use of the example Torch MLIR LTC backend. """ import argparse import sys import torch import torch._lazy import torch.nn.functional as F def main(device="lazy"): """ Load model to specified device. Ensure that any backends have been initialized by this point. :param device: name of device to load tensors to """ torch.manual_seed(0) inputs = torch.tensor([[1, 2, 3, 4, 5]], dtype=torch.float32, device=device) assert inputs.device.type == device targets = torch.tensor([3], dtype=torch.int64, device=device) assert targets.device.type == device print("Initialized data") class Model(torch.nn.Module): def __init__(self): super().__init__() self.fc1 = torch.nn.Linear(5, 10) def forward(self, x): out = self.fc1(x) out = F.relu(out) return out model = Model().to(device) model.train() assert all(p.device.type == device for p in model.parameters()) print("Initialized model") criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) num_epochs = 3 losses = [] for _ in range(num_epochs): optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() losses.append(loss) optimizer.step() if device == "lazy": print("Calling Mark Step") torch._lazy.mark_step() # Get debug information from LTC if "torch_mlir._mlir_libs._REFERENCE_LAZY_BACKEND" in sys.modules: computation = lazy_backend.get_latest_computation() if computation: print(computation.debug_string()) print(losses) return model, losses if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "-d", "--device", type=str.upper, choices=["CPU", "TS", "MLIR_EXAMPLE"], default="MLIR_EXAMPLE", help="The device type", ) args = parser.parse_args() if args.device in ("TS", "MLIR_EXAMPLE"): if args.device == "TS": import torch._lazy.ts_backend torch._lazy.ts_backend.init() elif args.device == "MLIR_EXAMPLE": import torch_mlir._mlir_libs._REFERENCE_LAZY_BACKEND as lazy_backend lazy_backend._initialize() device = "lazy" print("Initialized backend") else: device = args.device.lower() main(device)