# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # Also available under a BSD-style license. See LICENSE. import torch from torch_mlir_e2e_test.torchscript.framework import TestUtils from torch_mlir_e2e_test.torchscript.registry import register_test_case from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export # ============================================================================== class MmModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ]) def forward(self, lhs, rhs): return torch.mm(lhs, rhs) @register_test_case(module_factory=lambda: MmModule()) def MmModule_basic(module, tu: TestUtils): module.forward(tu.rand(4, 4), tu.rand(4, 4)) @register_test_case(module_factory=lambda: MmModule()) def MmModule_chained(module, tu: TestUtils): res = module.forward(tu.rand(4, 4), tu.rand(4, 4)) module.forward(res, res) # ============================================================================== class BmmModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ([-1, -1, -1], torch.float32, True), ]) def forward(self, lhs, rhs): return torch.bmm(lhs, rhs) @register_test_case(module_factory=lambda: BmmModule()) def BmmModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 5), tu.rand(3, 5, 4)) # ============================================================================== # A subgraph with multiple mm ops. class MmDagModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([4, 4], torch.float32, True), ([4, 4], torch.float32, True), ]) def forward(self, lhs, rhs): return torch.mm(lhs, torch.mm(lhs, rhs)) @register_test_case(module_factory=lambda: MmDagModule()) def MmDagModule_basic(module, tu: TestUtils): module.forward(tu.rand(4, 4), tu.rand(4, 4)) # ============================================================================== class MmTanhModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ]) def forward(self, lhs, rhs): return torch.tanh(self.matmul(lhs, rhs)) def matmul(self, lhs, rhs): return torch.mm(lhs, rhs) @register_test_case(module_factory=lambda: MmTanhModule()) def MmTanhModule_basic(module, tu: TestUtils): module.forward(tu.rand(4, 2), tu.rand(2, 4)) class AdaptiveAvgPool2dModule(torch.nn.Module): def __init__(self): super().__init__() self.aap2d = torch.nn.AdaptiveAvgPool2d((1, 1)) @export @annotate_args([ None, ([-1, -1, -1, -1], torch.float32, True), ]) def forward(self, x): return self.aap2d(x) @register_test_case(module_factory=lambda: AdaptiveAvgPool2dModule()) def AdaptiveAvgPool2dModule_basic(module, tu: TestUtils): module.forward(tu.rand(10, 3, 8, 9)) class FlattenStaticModule(torch.nn.Module): def __init__(self): super().__init__() self.flat = torch.nn.Flatten(2, 4) @export @annotate_args([ None, ([10, 3, 8, 9, 3, 4], torch.float32, True), ]) def forward(self, x): return self.flat(x) @register_test_case(module_factory=lambda: FlattenStaticModule()) def FlattenStaticModule_basic(module, tu: TestUtils): module.forward(tu.rand(10, 3, 8, 9, 3, 4)) class FlattenRank0Module(torch.nn.Module): def __init__(self): super().__init__() self.flat = torch.nn.Flatten(-1, -1) @export @annotate_args([ None, ([], torch.float32, True), ]) def forward(self, x): return self.flat(x) @register_test_case(module_factory=lambda: FlattenRank0Module()) def FlattenRank0Module_basic(module, tu: TestUtils): module.forward(torch.tensor(4.0)) class FlattenDynamicModule(torch.nn.Module): def __init__(self): super().__init__() self.flat = torch.nn.Flatten(2, 4) @export @annotate_args([ None, ([-1, -1, -1, 9, 3, -1], torch.float32, True), ]) def forward(self, x): return self.flat(x) @register_test_case(module_factory=lambda: FlattenDynamicModule()) def FlattenDynamicModule_basic(module, tu: TestUtils): module.forward(tu.rand(10, 3, 8, 9, 3, 4)) class MaxPool2dModule(torch.nn.Module): def __init__(self): super().__init__() self.mp2d = torch.nn.MaxPool2d(kernel_size=[6, 8], stride=[2, 2], padding=[3, 4], dilation=2) @export @annotate_args([ None, ([-1, -1, -1, -1], torch.float32, True), ]) def forward(self, x): return self.mp2d(x) @register_test_case(module_factory=lambda: MaxPool2dModule()) def MaxPool2dModule_basic(module, tu: TestUtils): module.forward(tu.rand(1, 1, 20, 20) - 0.5) class TransposeIntModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([3, 4, 2], torch.float32, True), ]) def forward(self, x): return torch.transpose(x, 0, 1) @register_test_case(module_factory=lambda: TransposeIntModule()) def TransposeIntModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 2)) class TensorsConcatModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ([-1, -1, -1], torch.float32, True), ([-1, -1, -1], torch.float32, True), ]) def forward(self, x, y, z): return torch.cat([x, y, z], 1) @register_test_case(module_factory=lambda: TensorsConcatModule()) def TensorsConcatModule_basic(module, tu: TestUtils): module.forward(tu.rand(2, 2, 4), tu.rand(2, 1, 4), tu.rand(2, 3, 4)) class GatherModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ([-1, -1, -1], torch.int64, True), ]) def forward(self, tensor, indices): return torch.gather(tensor, 2, indices) @register_test_case(module_factory=lambda: GatherModule()) def GatherModule_basic(module, tu: TestUtils): module.forward(tu.rand(2, 3, 4), torch.tensor([[[1, 2, 3], [1, 2, 3]]])) class AddSizeIntModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, tensor): # This is a workaround for not supporting scalar arguments. # TODO: pass in dim as an argument to the forward method when scalar # arguments are supported. return tensor.add(tensor, alpha=tensor.size(1)) @register_test_case(module_factory=lambda: AddSizeIntModule()) def AddSizeIntModule_basic(module, tu: TestUtils): module.forward(torch.randn(3, 3)) class AddSizeIntNegDimModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, tensor): # This is a workaround for not supporting scalar arguments. # TODO: pass in dim as an argument to the forward method when scalar # arguments are supported. return tensor.add(tensor, alpha=tensor.size(-2)) @register_test_case(module_factory=lambda: AddSizeIntNegDimModule()) def AddSizeIntNegDimModule_basic(module, tu: TestUtils): module.forward(torch.randn(3, 3)) class EmbeddingModule(torch.nn.Module): def __init__(self): super().__init__() torch.manual_seed(0) self.embed = torch.nn.Embedding(num_embeddings=100, embedding_dim=50, padding_idx=4) @export @annotate_args([ None, ([-1, -1], torch.int64, True), ]) def forward(self, indices): return self.embed.forward(indices) @register_test_case(module_factory=lambda: EmbeddingModule()) def EmbeddingModule_basic(module, tu: TestUtils): module.forward(torch.randint(100, (3, 3))) class SoftmaxIntModule(torch.nn.Module): def __init__(self): super().__init__() torch.manual_seed(0) self.softmax = torch.nn.Softmax(2) @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, tensor): return self.softmax.forward(tensor) @register_test_case(module_factory=lambda: SoftmaxIntModule()) def SoftmaxIntModule_basic(module, tu: TestUtils): module.forward(torch.randn(3, 2, 4)) class SoftmaxIntNegDimModule(torch.nn.Module): def __init__(self): super().__init__() torch.manual_seed(0) self.softmax = torch.nn.Softmax(-2) @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, tensor): return self.softmax.forward(tensor) @register_test_case(module_factory=lambda: SoftmaxIntNegDimModule()) def SoftmaxIntNegDimModule_basic(module, tu: TestUtils): module.forward(torch.randn(3, 2, 4)) class SoftmaxIntArgTypeF64Module(torch.nn.Module): def __init__(self): super().__init__() torch.manual_seed(0) self.softmax = torch.nn.Softmax(2) @export @annotate_args([ None, ([-1, -1, -1], torch.float64, True), ]) def forward(self, tensor): return self.softmax.forward(tensor) @register_test_case(module_factory=lambda: SoftmaxIntArgTypeF64Module()) def SoftmaxIntArgTypeF64Module_basic(module, tu: TestUtils): module.forward(torch.randn(3, 2, 4).double()) class BroadcastToModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, 1], torch.float32, True), ]) def forward(self, x): return torch.broadcast_to(x, [1, -1, -1, 4]) @register_test_case(module_factory=lambda: BroadcastToModule()) def BroadcastToModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 1, 1))