//===- func_builder.cpp ---------------------------------------------------===// // // This file is licensed under a pytorch-style license // See frontends/pytorch/LICENSE for license information. // //===----------------------------------------------------------------------===// #include "func_builder.h" #include "mlir-c/BuiltinAttributes.h" #include "mlir-c/BuiltinTypes.h" #include "mlir-c/Diagnostics.h" #include "npcomp-c/Types.h" using namespace torch_mlir; static MlirOperation createStandardConstant(MlirLocation loc, MlirType type, MlirAttribute value) { OperationStateHolder s("std.constant", loc); MlirNamedAttribute valueAttr = mlirNamedAttributeGet(toMlirStringRef("value"), value); mlirOperationStateAddResults(s, 1, &type); mlirOperationStateAddAttributes(s, 1, &valueAttr); return s.createOperation(); } KernelCallBuilder::KernelCallBuilder(MlirContext context, MlirLocation loc, llvm::StringRef kernelName, const c10::FunctionSchema &schema) : context(context), loc(loc), state("torch.kernel_call", loc), kernelName(kernelName), schema(schema) { (void)this->context; // Preserve for future. MlirNamedAttribute kernelNameAttr = mlirNamedAttributeGet( toMlirStringRef("kernelName"), mlirStringAttrGet( context, mlirStringRefCreate(kernelName.data(), kernelName.size()))); mlirOperationStateAddAttributes(state, 1, &kernelNameAttr); addSchemaAttrs(); } void KernelCallBuilder::addSchemaAttrs() { // Map the op schema to the kernel_call attributes: // sigArgTypes // sigRetTypes // sigIsVararg // sigIsVarret // sigIsMutable llvm::SmallVector attrs; attrs.push_back( mlirNamedAttributeGet(toMlirStringRef("sigIsMutable"), mlirBoolAttrGet(context, schema.is_mutable()))); attrs.push_back( mlirNamedAttributeGet(toMlirStringRef("sigIsVararg"), mlirBoolAttrGet(context, schema.is_vararg()))); attrs.push_back( mlirNamedAttributeGet(toMlirStringRef("sigIsVarret"), mlirBoolAttrGet(context, schema.is_varret()))); // Arg types. llvm::SmallVector args; for (auto &arg : schema.arguments()) { const std::string &typeStr = arg.type()->str(); args.push_back(mlirStringAttrGet( context, mlirStringRefCreate(typeStr.data(), typeStr.size()))); } attrs.push_back(mlirNamedAttributeGet( toMlirStringRef("sigArgTypes"), mlirArrayAttrGet(context, args.size(), args.data()))); // Return types. llvm::SmallVector returns; for (auto &ret : schema.returns()) { const std::string &typeStr = ret.type()->str(); returns.push_back(mlirStringAttrGet( context, mlirStringRefCreate(typeStr.data(), typeStr.size()))); } attrs.push_back(mlirNamedAttributeGet( toMlirStringRef("sigRetTypes"), mlirArrayAttrGet(context, returns.size(), returns.data()))); // Add attrs to op. mlirOperationStateAddAttributes(state, attrs.size(), attrs.data()); } void KernelCallBuilder::addOperand(MlirValue operand) { mlirOperationStateAddOperands(state, 1, &operand); } void KernelCallBuilder::addResultType(MlirType resultType) { mlirOperationStateAddResults(state, 1, &resultType); } MlirOperation KernelCallBuilder::create() { return state.createOperation(); } MlirType TypeMapper::mapFromTorchScalarType(c10::ScalarType scalarType) { auto type = rawMapFromTorchScalarType(scalarType); if (mlirTypeIsNull(type)) { std::stringstream message; message << "unsupported PyTorch scalar type: " << c10::toString(scalarType); throw std::invalid_argument(message.str()); } return type; } MlirType TypeMapper::mapFromTorchScalarType(MlirLocation loc, c10::ScalarType scalarType) { auto type = rawMapFromTorchScalarType(scalarType); if (mlirTypeIsNull(type)) { std::stringstream message; message << "unsupported PyTorch scalar type: " << c10::toString(scalarType); mlirEmitError(loc, message.str().c_str()); } return type; } MlirType TypeMapper::rawMapFromTorchScalarType(c10::ScalarType scalarType) { using c10::ScalarType; switch (scalarType) { case ScalarType::Byte: // TODO: convert to mlirIntegerTypeUnsignedGet once supported. return mlirIntegerTypeGet(context, 8); case ScalarType::Char: return mlirIntegerTypeGet(context, 8); case ScalarType::Short: // TODO: convert to mlirIntegerTypeSignedGet once supported. return mlirIntegerTypeGet(context, 16); case ScalarType::Int: // TODO: convert to mlirIntegerTypeSignedGet once supported. return mlirIntegerTypeGet(context, 32); case ScalarType::Long: // TODO: convert to mlirIntegerTypeSignedGet once supported. return mlirIntegerTypeGet(context, 64); case ScalarType::Bool: return npcompBoolTypeGet(context); case ScalarType::Double: return mlirF64TypeGet(context); case ScalarType::Float: return mlirF32TypeGet(context); case ScalarType::BFloat16: return mlirBF16TypeGet(context); case ScalarType::Half: return mlirF16TypeGet(context); default: { return {nullptr}; } } } MlirType TypeMapper::mapFromTorchType(MlirLocation loc, const c10::TypePtr &torchType) { using c10::TypeKind; auto kind = torchType->kind(); switch (kind) { case TypeKind::TensorType: { auto tensorType = torchType->cast(); // Element type. MlirType elementType; if (tensorType->scalarType()) { elementType = mapFromTorchScalarType(loc, *tensorType->scalarType()); if (mlirTypeIsNull(elementType)) return {nullptr}; } else { elementType = npcompAnyDtypeTypeGet(context); } // Sizes. auto &sizes = tensorType->symbolic_sizes(); if (!sizes.rank()) { // Unranked. return npcompNdArrayTypeGetUnranked(elementType); } // Ranked with possibly dynamic dims. auto &symbolicShape = tensorType->symbolic_sizes(); llvm::SmallVector dims; dims.resize(*sizes.rank()); for (size_t i = 0; i < dims.size(); ++i) { auto shapeSymbol = symbolicShape[i]; dims[i] = shapeSymbol.is_static() ? shapeSymbol.static_size() : -1; } return npcompNdArrayTypeGetRanked(dims.size(), dims.data(), elementType); } default: { std::stringstream message; message << "unable to map Torch type " << torchType << " to MLIR type"; mlirEmitError(loc, message.str().c_str()); return {nullptr}; } } } MlirType TypeMapper::forwardTensorToType(at::Tensor tensor) { if (!tensor.defined()) { // Undefined tensors are equivalent to None. // This may need to be re-evaluated at some point. return npcompNoneTypeGet(context); } MlirType elementType = mapFromTorchScalarType(tensor.scalar_type()); // TODO: Decide when it is necessary to take strides into account. Right now, // just erase them and let the compiler decide. auto sizes = tensor.sizes(); return npcompNdArrayTypeGetRanked(sizes.size(), sizes.data(), elementType); } std::unique_ptr FuncBuilder::createFunction(FuncBuilder::Inserter &inserter, MlirLocation location, llvm::StringRef name, llvm::SmallVectorImpl &inputTypes) { auto context = mlirLocationGetContext(location); // TODO: Create a dedicated API upstream for creating/manipulating func ops. // (this is fragile and reveals details that are not guaranteed). llvm::SmallVector funcAttrs; funcAttrs.push_back( mlirNamedAttributeGet(toMlirStringRef("type"), mlirTypeAttrGet(mlirFunctionTypeGet( context, inputTypes.size(), inputTypes.data(), /*numResults=*/0, /*results=*/nullptr)))); funcAttrs.push_back(mlirNamedAttributeGet( toMlirStringRef("sym_name"), mlirStringAttrGet(context, mlirStringRefCreate(name.data(), name.size())))); MlirOperationState state = mlirOperationStateGet(toMlirStringRef("func"), location); mlirOperationStateAddAttributes(&state, funcAttrs.size(), funcAttrs.data()); { // Don't access these once ownership transferred. MlirRegion newBodyRegion = mlirRegionCreate(); MlirBlock newEntryBlock = mlirBlockCreate(inputTypes.size(), inputTypes.data()); mlirRegionInsertOwnedBlockAfter(newBodyRegion, {nullptr}, newEntryBlock); mlirOperationStateAddOwnedRegions(&state, 1, &newBodyRegion); } // Need to re-lookup the region/block because we relinquished ownership above. MlirOperation funcOp = mlirOperationCreate(&state); MlirRegion bodyRegion = mlirOperationGetRegion(funcOp, 0); MlirBlock entryBlock = mlirRegionGetFirstBlock(bodyRegion); inserter(funcOp); return std::unique_ptr(new FuncBuilder( context, funcOp, BlockBuilder(entryBlock, /*returnOp=*/{nullptr}, true))); } void FuncBuilder::rewriteFuncReturnTypes( llvm::SmallVectorImpl &resultTypes) { // Get inputs from current function type. MlirAttribute funcTypeAttr = mlirOperationGetAttributeByName(funcOp, toMlirStringRef("type")); assert(!mlirAttributeIsNull(funcTypeAttr) && "function missing 'type' attribute"); assert(mlirAttributeIsAType(funcTypeAttr) && "function type is not a TypeAttr"); MlirType funcType = mlirTypeAttrGetValue(funcTypeAttr); llvm::SmallVector inputTypes; for (intptr_t i = 0, e = mlirFunctionTypeGetNumInputs(funcType); i < e; ++i) { inputTypes.push_back(mlirFunctionTypeGetInput(funcType, i)); } // Make new function type. MlirType newFuncType = mlirFunctionTypeGet(context, inputTypes.size(), inputTypes.data(), resultTypes.size(), resultTypes.data()); MlirAttribute newFuncTypeAttr = mlirTypeAttrGet(newFuncType); mlirOperationSetAttributeByName(funcOp, toMlirStringRef("type"), newFuncTypeAttr); (void)newFuncTypeAttr; } MlirValue FuncBuilder::insertConstantOp(MlirOperation op) { mlirBlockInsertOwnedOperationAfter(entryBlock.getBlock(), prevConstantOp, op); prevConstantOp = op; return mlirOperationGetResult(op, 0); } MlirValue FuncBuilder::lookupTensor(at::Tensor tensor) { for (auto it = tensorValueMap.rbegin(), e = tensorValueMap.rend(); it != e; ++it) { if (it->first.is_same(tensor)) return it->second; } return {nullptr}; } MlirValue FuncBuilder::getScalarConstant(MlirLocation loc, at::Scalar s) { // Note that interpreter "scalars" match the Python semantics and are // represented as one of double or int64_t, with a special tag for whether // it should be interpreted as a bool. if (s.isIntegral(/*includeBool=*/false)) { // TODO: Switch to a basicpy.constant that works properly with signed // integers and then switch this to a signed integer. MlirType t = mlirIntegerTypeGet(context, 64); MlirAttribute value = mlirIntegerAttrGet(t, s.to()); return getGeneralConstant(loc, value); } if (s.isFloatingPoint()) { MlirType t = mlirF64TypeGet(context); MlirAttribute value = mlirFloatAttrDoubleGet(context, t, s.to()); return getGeneralConstant(loc, value); } if (s.isBoolean()) { return getBoolConstant(loc, s.to()); } // TODO: s.isComplex() throw std::invalid_argument("TODO: Scalar of unknown kind"); } MlirValue FuncBuilder::getBoolConstant(MlirLocation loc, bool v) { MlirAttribute value = mlirBoolAttrGet(context, v); return getGeneralConstant(loc, value); } MlirValue FuncBuilder::getNoneConstant(MlirLocation loc) { OperationStateHolder state{"basicpy.singleton", loc}; MlirType noneType = npcompNoneTypeGet(context); mlirOperationStateAddResults(state, 1, &noneType); MlirOperation op = state.createOperation(); return insertConstantOp(op); } MlirValue FuncBuilder::getGeneralConstant(MlirLocation loc, MlirAttribute value) { MlirType valueType = mlirAttributeGetType(value); MlirOperation constOp = createStandardConstant(loc, valueType, value); MlirValue constValue = insertConstantOp(constOp); return constValue; } MlirValue FuncBuilder::buildList(MlirLocation loc, llvm::SmallVectorImpl &elements) { MlirType resultType = npcompListTypeGet(context); OperationStateHolder state{"basicpy.build_list", loc}; mlirOperationStateAddResults(state, 1, &resultType); mlirOperationStateAddOperands(state, elements.size(), elements.data()); MlirOperation op = state.createOperation(); entryBlock.insertBeforeTerminator(op); return mlirOperationGetResult(op, 0); }