//===- InlineGlobalSlots.cpp -------------------------------------*- C++-*-===// // // This file is licensed under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // Also available under a BSD-style license. See LICENSE. // //===----------------------------------------------------------------------===// // // This file implements an optimistic dataflow analysis that proves that values // used in global slot initializers are "safe" (see definition below). This // analysis allows us to inline global slot initializers. // // One thing to note is that this inlining (as with all inlining) can create // duplicate ops. That is usually not a problem, except for certain large // tensor literals. We rely on later CSE passes to deduplicate those literals. // // For debugging this pass an effort has been made for // `-debug-only=dataflow` and `-debug-only=torch-inline-global-slots` to give a // good experience. When debugging this pass, it is recommended to start with // `-debug-only=torch-inline-global-slots` to find values that are marked // unsafe unexpectedly and then `-debug-only=dataflow` to find why. // //===----------------------------------------------------------------------===// #include "PassDetail.h" #include "mlir/Analysis/DataFlowFramework.h" #include "mlir/Analysis/SliceAnalysis.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/IRMapping.h" #include "torch-mlir/Dialect/Torch/IR/TorchDialect.h" #include "torch-mlir/Dialect/Torch/IR/TorchOps.h" #include "torch-mlir/Dialect/Torch/Transforms/Passes.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "torch-inline-global-slots" using namespace mlir; using namespace mlir::torch; using namespace mlir::torch::Torch; /// A program point representing a symbol. /// /// In principle we could use the `Operation *` program point of the Symbol op, /// but that just adds a layer of indirection through a symbol table for the /// purpose of this analysis. /// /// This is easier because we only support FlatSymbolRefAttr's in Torch-MLIR in /// a single module. If we had to support complex nested symbol references, we /// would probably want to go through the effort to indirect through the symbol /// tables to make things clearer. class FlatSymbolRefProgramPoint : public GenericProgramPointBase { public: using Base::Base; void print(raw_ostream &os) const override { os << "FlatSymbolRefProgramPoint(" << getValue() << ")"; } Location getLoc() const override { return UnknownLoc::get(getValue().getContext()); } }; static bool isTypeTriviallySafe(Type type) { return type.isa(); } static bool isUseTreatedWithValueSemantics(OpOperand &use) { Operation *op = use.getOwner(); // If the op unconditionally has value semantics, then the use has value // semantics. if (op->hasTrait()) return true; // The condition of the torch.prim.if op is treated with value semantics. if (isa(op) && use.getOperandNumber() == 0) return true; // TODO: Generalize the HasValueSemantics trait to support // operand/result-granularity. return false; } /// State tracking if an IR construct is "safe". /// /// This state is tracked on Value's and also on global slots (via a /// FlatSymbolRefProgramPoint). /// /// In this context, "safe" means that the object is safe to inline. /// This covers a few concepts /// - the value cannot be mutated by the program /// - the value cannot be potentially aliased, with that alias itself being /// unsafe class InlineGlobalSlotsAnalysisState : public AnalysisState { public: InlineGlobalSlotsAnalysisState(ProgramPoint point) : AnalysisState(point) { setSafe(); } void print(raw_ostream &os) const override { os << "InlineGlobalSlotsAnalysisState(" << (isSafe ? "safe" : "unsafe") << ")"; } /// Helper for setting the state with the correct ChangeResult. ChangeResult setSafe(bool newIsSafe = true) { // As an optimistic analysis, once we prove that a value is unsafe, nothing // can prove that it is safe again. This is the monotonicity property of // the dataflow analysis that guarantees that we reach a fixed-point. // If that property doesn't hold, then there is a bug in the analysis. assert(!(isSafe == false && newIsSafe == true) && "non-monotonic update"); if (isSafe == newIsSafe) return ChangeResult::NoChange; isSafe = newIsSafe; return ChangeResult::Change; } /// Helper for updatating the state with the correct ChangeResult based on the /// safety of a use. ChangeResult incorporateSafetyOfUse(const InlineGlobalSlotsAnalysisState *useState) { // The use is safe, so no need to change anything. if (useState->isSafe) return ChangeResult::NoChange; return setSafe(false); } /// This is an optimistic analysis. We start assuming everything is safe. bool isSafe = true; }; class InlineGlobalSlotsAnalysis : public DataFlowAnalysis { public: InlineGlobalSlotsAnalysis(DataFlowSolver &solver); LogicalResult initialize(Operation *top) override; LogicalResult visit(ProgramPoint point) override; private: /// The local transfer function determining the safety of `value`. bool isValueSafeTransferFunction(Value value); /// The InitializeGlobalSlotsOp of the current module we are analyzing. /// /// This is used to propagate the analysis from globals into to the module /// initializer. InitializeGlobalSlotsOp initializeGlobalSlotsOp; }; InlineGlobalSlotsAnalysis::InlineGlobalSlotsAnalysis(DataFlowSolver &solver) : DataFlowAnalysis(solver) { registerPointKind(); } LogicalResult InlineGlobalSlotsAnalysis::initialize(Operation *top) { auto walkResult = top->walk([this](Operation *op) { if (auto globalSlot = dyn_cast(op)) { auto *state = getOrCreate( getProgramPoint( FlatSymbolRefAttr::get(globalSlot.getSymNameAttr()))); propagateIfChanged(state, state->setSafe(globalSlot.getVisibility() != SymbolTable::Visibility::Public)); } if (auto globalSlotSet = dyn_cast(op)) { auto *state = getOrCreate( getProgramPoint(globalSlotSet.getSlotAttr())); propagateIfChanged(state, state->setSafe(false)); } // Save the InitializeGlobalSlotsOp for later referencee if (auto initialize = dyn_cast(op)) { initializeGlobalSlotsOp = initialize; } for (Value result : op->getResults()) { if (failed(visit(result))) return WalkResult::interrupt(); } return WalkResult::advance(); }); if (walkResult.wasInterrupted()) return failure(); return success(); } LogicalResult InlineGlobalSlotsAnalysis::visit(ProgramPoint point) { if (Value value = point.dyn_cast()) { bool isSafe = isValueSafeTransferFunction(value); auto *state = getOrCreate(value); propagateIfChanged(state, state->setSafe(isSafe)); // Handle GlobalSlotGetOp's. if (auto opResult = value.dyn_cast()) { if (auto globalSlotGet = dyn_cast(opResult.getOwner())) { auto *flatSymbolRefPoint = getProgramPoint( globalSlotGet.getSlotAttr()); auto *valueState = getOrCreateFor( flatSymbolRefPoint, globalSlotGet.getResult()); auto *globalState = getOrCreate(flatSymbolRefPoint); propagateIfChanged(globalState, globalState->incorporateSafetyOfUse(valueState)); } } return success(); } if (auto *genericProgramPoint = point.dyn_cast()) { if (auto *flatSymbolRefPoint = dyn_cast(genericProgramPoint)) { if (initializeGlobalSlotsOp) { auto it = llvm::find(initializeGlobalSlotsOp.getSlotSymNames(), static_cast(flatSymbolRefPoint->getValue())); Value value = initializeGlobalSlotsOp->getOperand( std::distance(initializeGlobalSlotsOp.getSlotSymNames().begin(), it)); auto *flatSymbolRefState = getOrCreateFor(value, flatSymbolRefPoint); auto *valueState = getOrCreate(value); propagateIfChanged(valueState, valueState->setSafe(flatSymbolRefState->isSafe)); } return success(); } } LLVM_DEBUG( { llvm::dbgs() << "visit failing because of: " << point << "\n"; }); return failure(); } // This is only a member function to access protected get* functions. bool InlineGlobalSlotsAnalysis::isValueSafeTransferFunction(Value value) { if (isTypeTriviallySafe(value.getType())) return true; for (OpOperand &use : value.getUses()) { Operation *op = use.getOwner(); if (isUseTreatedWithValueSemantics(use)) continue; // If the op is read-only and all results are safe, then this value is // safe. This covers, for example, view-like ops that create aliases. if ((op->hasTrait() || isMemoryEffectFree(op)) && llvm::all_of(op->getResults(), [&](Value result) { auto *state = getOrCreateFor(value, result); return state->isSafe; })) continue; if (auto initialize = dyn_cast(op)) { auto symName = initialize.getSlotSymNames()[use.getOperandNumber()] .cast(); auto *state = getOrCreateFor( value, getProgramPoint(symName)); if (state->isSafe) continue; } // We may not create all the dependency edges, but that is ok since at // this point we have already reached the fixed-point. return false; } return true; } SmallVector getBackwardSliceIncludingRoot(Value initialValue) { SetVector sliceSet; getBackwardSlice(initialValue, &sliceSet); SmallVector slice; llvm::append_range(slice, sliceSet); slice.push_back(initialValue.getDefiningOp()); return slice; } static bool isInitialValueTransitivelySafeToInline(Value initialValue, DataFlowSolver &solver) { SmallVector slice = getBackwardSliceIncludingRoot(initialValue); for (Operation *op : slice) { for (auto result : op->getResults()) { auto *state = solver.lookupState(result); if (!state->isSafe) { return false; } } } return true; } namespace { class InlineGlobalSlotsPass : public InlineGlobalSlotsBase { void runOnOperation() override { ModuleOp module = getOperation(); DataFlowSolver solver; solver.load(); if (failed(solver.initializeAndRun(module))) return signalPassFailure(); LLVM_DEBUG({ module->walk([&](Operation *op) { if (auto globalSlot = dyn_cast(op)) { auto *state = solver.lookupState( solver.getProgramPoint( FlatSymbolRefAttr::get(globalSlot.getSymNameAttr()))); state->print(llvm::dbgs()); llvm::dbgs() << ": " << FlatSymbolRefAttr::get(globalSlot.getSymNameAttr()) << "\n"; return; } if (op->getNumResults() != 1) return; auto *state = solver.lookupState( op->getResult(0)); state->print(llvm::dbgs()); llvm::dbgs() << ": "; op->dump(); }); }); Torch::InitializeGlobalSlotsOp initialize; // TODO: Have a torch.module with an optional initializer region to make // this tighter. for (auto moduleInitializer : module.getOps()) { initialize = cast( moduleInitializer.getBody()->getTerminator()); } if (!initialize) { return; } DenseSet safeToInline; for (int i = 0, e = initialize->getNumOperands(); i != e; i++) { auto slotSymName = initialize.getSlotSymNames()[i].cast(); Value operand = initialize.getOperand(i); auto symbolRefPoint = solver.getProgramPoint( initialize.getSlotSymNames()[i].cast()); auto *state = solver.lookupState(symbolRefPoint); // We roll the analysis of whether a slot is set or public into the // main dataflow analysis, so we need to check the slot's // FlatSymbolRefProgramPoint itself to see if it is safe to inline. // For example, a public !torch.int is not safe to inline, even though // it is a value-semantic type and so the actual initializer value // itself is conceptually safe to inline. if (!state->isSafe) { continue; } // Check to see if the initializing value is safe to inline. // This requires a transitive check of all subobjects. // TODO: This would really be more logical to do as a forward dataflow // analyis on the whole module initializer rather than doing the // transitive check backward for each initial value. But it is just // too much boilerplate to write that with the dataflow framework and we // generally don't expect long transitive chains of values here -- most // initial values are just single tensor literals. if (isInitialValueTransitivelySafeToInline(operand, solver)) { safeToInline.insert(slotSymName); } } SymbolTable symbolTable(module); DenseSet toErase; module.walk([&](Torch::GlobalSlotGetOp op) { if (!safeToInline.count(op.getSlotAttr())) return; // TODO: Make this more ergonomic. auto it = llvm::find(initialize.getSlotSymNames(), op.getSlotAttr()); Value initialValue = initialize.getOperand( std::distance(initialize.getSlotSymNames().begin(), it)); // It seems inefficient to get a backward slice again here, but we are // going to be cloning the whole slice anyway, so it doesn't seem like a // big deal. SmallVector slice = getBackwardSliceIncludingRoot(initialValue); IRMapping mapping; OpBuilder builder(op); for (Operation *opInSlice : slice) builder.clone(*opInSlice, mapping); auto inlinedInitialValue = mapping.lookup(initialValue); inlinedInitialValue = Torch::adjustStaticInformation( builder, op.getLoc(), inlinedInitialValue, op.getType(), /*userAllowsRefinement=*/false); op.replaceAllUsesWith(inlinedInitialValue); toErase.insert(op); }); // Clean up after the transform. // Erase any pending ops. for (Operation *op : toErase) op->erase(); // Erase any global slots that we inlined. // This could be left to SymbolDCE but it's not hard to do here. for (FlatSymbolRefAttr symName : llvm::map_range(safeToInline, [](Attribute attr) { return attr.cast(); })) { auto globalSlot = symbolTable.lookup(symName.getValue()); globalSlot.erase(); } // Update the initializer. SmallVector newSlotSymNames; SmallVector newInitialValues; for (int i = 0, e = initialize.getNumOperands(); i != e; i++) { auto slotSymName = initialize.getSlotSymNames()[i].cast(); if (!safeToInline.count(slotSymName)) { newSlotSymNames.push_back(slotSymName); newInitialValues.push_back(initialize.getOperand(i)); } } { OpBuilder builder(initialize); builder.create( initialize.getLoc(), ArrayAttr::get(module.getContext(), newSlotSymNames), newInitialValues); } initialize.erase(); } }; } // namespace std::unique_ptr> mlir::torch::Torch::createInlineGlobalSlotsPass() { return std::make_unique(); }