# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception import torch import torch.nn as nn from torch_mlir.torchscript.e2e_test.framework import TestUtils from torch_mlir.torchscript.e2e_test.registry import register_test_case from torch_mlir.torchscript.annotations import annotate_args, export # ============================================================================== # Multi-layer perceptron (MLP) models. class Mlp1LayerModule(torch.nn.Module): def __init__(self): super().__init__() # Reset seed to make model deterministic. torch.manual_seed(0) self.fc0 = nn.Linear(3, 5) self.tanh0 = nn.Tanh() @export @annotate_args([ None, ([-1, -1], torch.float32), ]) def forward(self, x): return self.tanh0(self.fc0(x)) @register_test_case(module_factory=lambda: Mlp1LayerModule()) def Mlp1LayerModule_basic(module, tu: TestUtils): module.forward(tu.rand(5, 3)) class Mlp2LayerModule(torch.nn.Module): def __init__(self): super().__init__() # Reset seed to make model deterministic. torch.manual_seed(0) N_HIDDEN = 5 self.fc0 = nn.Linear(3, N_HIDDEN) self.tanh0 = nn.Tanh() self.fc1 = nn.Linear(N_HIDDEN, 2) self.tanh1 = nn.Tanh() @export @annotate_args([ None, ([-1, -1], torch.float32), ]) def forward(self, x): x = self.tanh0(self.fc0(x)) x = self.tanh1(self.fc1(x)) return x @register_test_case(module_factory=lambda: Mlp2LayerModule()) def Mlp2LayerModule_basic(module, tu: TestUtils): module.forward(tu.rand(5, 3))