//===-------------------------------------------------------*- tablegen -*-===// // // This file is licensed under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // // Operation summaries and descriptions were systematically derived from public // API docstrings and are licensed accordingly: // https://github.com/pytorch/pytorch/blob/master/LICENSE //===----------------------------------------------------------------------===// // // This file is automatically generated. Please do not edit. // Generated via: // python -m torch_mlir_utils.codegen.torch_ods_gen // //===----------------------------------------------------------------------===// def Torch_AtenTanhOp : Torch_Op<"aten.tanh", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::tanh : (Tensor) -> (Tensor)`"; let arguments = (ins AnyTorchTensorType:$self ); let results = (outs AnyTorchTensorType:$result ); let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)"; } def Torch_AtenTanh_Op : Torch_Op<"aten.tanh_", [ IsTrailingUnderscoreInplaceVariant, AllowsTypeRefinement ]> { let summary = "Generated op for `aten::tanh_ : (Tensor) -> (Tensor)`"; let arguments = (ins AnyTorchTensorType:$self ); let results = (outs AnyTorchTensorType:$result ); let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)"; } def Torch_AtenReluOp : Torch_Op<"aten.relu", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::relu : (Tensor) -> (Tensor)`"; let arguments = (ins AnyTorchTensorType:$self ); let results = (outs AnyTorchTensorType:$result ); let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)"; } def Torch_AtenRelu_Op : Torch_Op<"aten.relu_", [ IsTrailingUnderscoreInplaceVariant, AllowsTypeRefinement ]> { let summary = "Generated op for `aten::relu_ : (Tensor) -> (Tensor)`"; let arguments = (ins AnyTorchTensorType:$self ); let results = (outs AnyTorchTensorType:$result ); let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)"; } def Torch_AtenAddTensorOp : Torch_Op<"aten.add.Tensor", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::add.Tensor : (Tensor, Tensor, Scalar) -> (Tensor)`"; let arguments = (ins AnyTorchTensorType:$self, AnyTorchTensorType:$other, AnyTorchScalarType:$alpha ); let results = (outs AnyTorchTensorType:$result ); let assemblyFormat = "$self `,` $other `,` $alpha attr-dict `:` type($self) `,` type($other) `,` type($alpha) `->` type($result)"; } def Torch_AtenAdd_TensorOp : Torch_Op<"aten.add_.Tensor", [ IsTrailingUnderscoreInplaceVariant, AllowsTypeRefinement ]> { let summary = "Generated op for `aten::add_.Tensor : (Tensor, Tensor, Scalar) -> (Tensor)`"; let arguments = (ins AnyTorchTensorType:$self, AnyTorchTensorType:$other, AnyTorchScalarType:$alpha ); let results = (outs AnyTorchTensorType:$result ); let assemblyFormat = "$self `,` $other `,` $alpha attr-dict `:` type($self) `,` type($other) `,` type($alpha) `->` type($result)"; } def Torch_AtenLinearOp : Torch_Op<"aten.linear", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::linear : (Tensor, Tensor, Tensor?) -> (Tensor)`"; let arguments = (ins AnyTorchTensorType:$input, AnyTorchTensorType:$weight, AnyTorchOptionalTensor:$bias ); let results = (outs AnyTorchTensorType:$result ); let assemblyFormat = "$input `,` $weight `,` $bias attr-dict `:` type($input) `,` type($weight) `,` type($bias) `->` type($result)"; } def Torch_AtenMmOp : Torch_Op<"aten.mm", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::mm : (Tensor, Tensor) -> (Tensor)`"; let arguments = (ins AnyTorchTensorType:$self, AnyTorchTensorType:$mat2 ); let results = (outs AnyTorchTensorType:$result ); let assemblyFormat = "$self `,` $mat2 attr-dict `:` type($self) `,` type($mat2) `->` type($result)"; } def Torch_AtenConv2dOp : Torch_Op<"aten.conv2d", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::conv2d : (Tensor, Tensor, Tensor?, int[], int[], int[], int) -> (Tensor)`"; let arguments = (ins AnyTorchTensorType:$input, AnyTorchTensorType:$weight, AnyTorchOptionalTensor:$bias, AnyTorchIntListType:$stride, AnyTorchIntListType:$padding, AnyTorchIntListType:$dilation, AnyTorchIntType:$groups ); let results = (outs AnyTorchTensorType:$result ); let assemblyFormat = "$input `,` $weight `,` $bias `,` $stride `,` $padding `,` $dilation `,` $groups attr-dict `:` type($input) `,` type($weight) `,` type($bias) `,` type($stride) `,` type($padding) `,` type($dilation) `,` type($groups) `->` type($result)"; } def Torch_AtenBatchNormOp : Torch_Op<"aten.batch_norm", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::batch_norm : (Tensor, Tensor?, Tensor?, Tensor?, Tensor?, bool, float, float, bool) -> (Tensor)`"; let arguments = (ins AnyTorchTensorType:$input, AnyTorchOptionalTensor:$weight, AnyTorchOptionalTensor:$bias, AnyTorchOptionalTensor:$running_mean, AnyTorchOptionalTensor:$running_var, AnyTorchBoolType:$training, AnyFloat:$momentum, AnyFloat:$eps, AnyTorchBoolType:$cudnn_enabled ); let results = (outs AnyTorchTensorType:$result ); let assemblyFormat = "$input `,` $weight `,` $bias `,` $running_mean `,` $running_var `,` $training `,` $momentum `,` $eps `,` $cudnn_enabled attr-dict `:` type($input) `,` type($weight) `,` type($bias) `,` type($running_mean) `,` type($running_var) `,` type($training) `,` type($momentum) `,` type($eps) `,` type($cudnn_enabled) `->` type($result)"; } def Torch_AtenMaxPool2dOp : Torch_Op<"aten.max_pool2d", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::max_pool2d : (Tensor, int[], int[], int[], int[], bool) -> (Tensor)`"; let arguments = (ins AnyTorchTensorType:$self, AnyTorchIntListType:$kernel_size, AnyTorchIntListType:$stride, AnyTorchIntListType:$padding, AnyTorchIntListType:$dilation, AnyTorchBoolType:$ceil_mode ); let results = (outs AnyTorchTensorType:$result ); let assemblyFormat = "$self `,` $kernel_size `,` $stride `,` $padding `,` $dilation `,` $ceil_mode attr-dict `:` type($self) `,` type($kernel_size) `,` type($stride) `,` type($padding) `,` type($dilation) `,` type($ceil_mode) `->` type($result)"; } def Torch_AtenAdaptiveAvgPool2dOp : Torch_Op<"aten.adaptive_avg_pool2d", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::adaptive_avg_pool2d : (Tensor, int[]) -> (Tensor)`"; let arguments = (ins AnyTorchTensorType:$self, AnyTorchIntListType:$output_size ); let results = (outs AnyTorchTensorType:$result ); let assemblyFormat = "$self `,` $output_size attr-dict `:` type($self) `,` type($output_size) `->` type($result)"; } def Torch_AtenFlattenUsingIntsOp : Torch_Op<"aten.flatten.using_ints", [ AllowsTypeRefinement ]> { let summary = "Generated op for `aten::flatten.using_ints : (Tensor, int, int) -> (Tensor)`"; let arguments = (ins AnyTorchTensorType:$self, AnyTorchIntType:$start_dim, AnyTorchIntType:$end_dim ); let results = (outs AnyTorchTensorType:$result ); let assemblyFormat = "$self `,` $start_dim `,` $end_dim attr-dict `:` type($self) `,` type($start_dim) `,` type($end_dim) `->` type($result)"; } def Torch_AtenDimOp : Torch_Op<"aten.dim", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::dim : (Tensor) -> (int)`"; let arguments = (ins AnyTorchTensorType:$self ); let results = (outs AnyTorchIntType:$result ); let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)"; } def Torch_AtenSizeOp : Torch_Op<"aten.size", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::size : (Tensor) -> (int[])`"; let arguments = (ins AnyTorchTensorType:$self ); let results = (outs AnyTorchIntListType:$result ); let assemblyFormat = "$self attr-dict `:` type($self) `->` type($result)"; let hasCanonicalizer = 1; } def Torch_AtenGtIntOp : Torch_Op<"aten.gt.int", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::gt.int : (int, int) -> (bool)`"; let arguments = (ins AnyTorchIntType:$a, AnyTorchIntType:$b ); let results = (outs AnyTorchBoolType:$result ); let assemblyFormat = "$a `,` $b attr-dict `:` type($a) `,` type($b) `->` type($result)"; } def Torch_AtenNeIntOp : Torch_Op<"aten.ne.int", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::ne.int : (int, int) -> (bool)`"; let arguments = (ins AnyTorchIntType:$a, AnyTorchIntType:$b ); let results = (outs AnyTorchBoolType:$result ); let assemblyFormat = "$a `,` $b attr-dict `:` type($a) `,` type($b) `->` type($result)"; } def Torch_AtenAddIntOp : Torch_Op<"aten.add.int", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::add.int : (int, int) -> (int)`"; let arguments = (ins AnyTorchIntType:$a, AnyTorchIntType:$b ); let results = (outs AnyTorchIntType:$result ); let assemblyFormat = "$a `,` $b attr-dict `:` type($a) `,` type($b) `->` type($result)"; } def Torch_AtenMulIntOp : Torch_Op<"aten.mul.int", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::mul.int : (int, int) -> (int)`"; let arguments = (ins AnyTorchIntType:$a, AnyTorchIntType:$b ); let results = (outs AnyTorchIntType:$result ); let assemblyFormat = "$a `,` $b attr-dict `:` type($a) `,` type($b) `->` type($result)"; } def Torch_AtenAddFloatIntOp : Torch_Op<"aten.add.float_int", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::add.float_int : (float, int) -> (float)`"; let arguments = (ins AnyFloat:$a, AnyTorchIntType:$b ); let results = (outs AnyFloat:$result ); let assemblyFormat = "$a `,` $b attr-dict `:` type($a) `,` type($b) `->` type($result)"; } def Torch_AtenMulFloatOp : Torch_Op<"aten.mul.float", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::mul.float : (float, float) -> (float)`"; let arguments = (ins AnyFloat:$a, AnyFloat:$b ); let results = (outs AnyFloat:$result ); let assemblyFormat = "$a `,` $b attr-dict `:` type($a) `,` type($b) `->` type($result)"; } def Torch_AtenLtFloatIntOp : Torch_Op<"aten.lt.float_int", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::lt.float_int : (float, int) -> (bool)`"; let arguments = (ins AnyFloat:$a, AnyTorchIntType:$b ); let results = (outs AnyTorchBoolType:$result ); let assemblyFormat = "$a `,` $b attr-dict `:` type($a) `,` type($b) `->` type($result)"; } def Torch_Aten__Is__Op : Torch_Op<"aten.__is__", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::__is__ : (t1, t2) -> (bool)`"; let arguments = (ins AnyTorchType:$self, AnyTorchType:$obj ); let results = (outs AnyTorchBoolType:$result ); let assemblyFormat = "$self `,` $obj attr-dict `:` type($self) `,` type($obj) `->` type($result)"; let hasFolder = 1; } def Torch_AtenLenTOp : Torch_Op<"aten.len.t", [ AllowsTypeRefinement, HasValueSemantics ]> { let summary = "Generated op for `aten::len.t : (t[]) -> (int)`"; let arguments = (ins Basicpy_ListType:$a ); let results = (outs AnyTorchIntType:$result ); let assemblyFormat = "$a attr-dict `:` type($a) `->` type($result)"; let hasCanonicalizer = 1; }