// RUN: torch-mlir-opt <%s -convert-torch-to-tosa -split-input-file -verify-diagnostics | FileCheck %s // CHECK-LABEL: func @torch.aten.tanh$basic( // CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[ARG_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[RESULT_BUILTIN:.*]] = "tosa.tanh"(%[[ARG_BUILTIN]]) : (tensor) -> tensor // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[RESULT_BUILTIN]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[RESULT]] : !torch.vtensor<[?,?],f32> func @torch.aten.tanh$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %0 = torch.aten.tanh %arg0 : !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func @torch.aten.sigmoid$basic( // CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[ARG_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[RESULT_BUILTIN:.*]] = "tosa.sigmoid"(%[[ARG_BUILTIN]]) : (tensor) -> tensor // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[RESULT_BUILTIN]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[RESULT]] : !torch.vtensor<[?,?],f32> func @torch.aten.sigmoid$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %0 = torch.aten.sigmoid %arg0 : !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func @torch.aten.relu$basic( // CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[ARG_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[RESULT_BUILTIN:.*]] = "tosa.clamp"(%[[ARG_BUILTIN]]) {max_fp = 3.40282347E+38 : f32, max_int = 2147483647 : i64, min_fp = 0.000000e+00 : f32, min_int = 0 : i64} : (tensor) -> tensor // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[RESULT_BUILTIN]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[RESULT]] : !torch.vtensor<[?,?],f32> func @torch.aten.relu$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %0 = torch.aten.relu %arg0 : !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func @torch.aten.log$basic( // CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[ARG_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[RESULT_BUILTIN:.*]] = "tosa.log"(%[[ARG_BUILTIN]]) : (tensor) -> tensor // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[RESULT_BUILTIN]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[RESULT]] : !torch.vtensor<[?,?],f32> func @torch.aten.log$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %0 = torch.aten.log %arg0 : !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func @torch.aten.exp$basic( // CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[ARG_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[RESULT_BUILTIN:.*]] = "tosa.exp"(%[[ARG_BUILTIN]]) : (tensor) -> tensor // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[RESULT_BUILTIN]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[RESULT]] : !torch.vtensor<[?,?],f32> func @torch.aten.exp$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %0 = torch.aten.exp %arg0 : !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func @torch.aten.neg$basic( // CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[ARG_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[RESULT_BUILTIN:.*]] = "tosa.negate"(%[[ARG_BUILTIN]]) : (tensor) -> tensor // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[RESULT_BUILTIN]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[RESULT]] : !torch.vtensor<[?,?],f32> func @torch.aten.neg$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %0 = torch.aten.neg %arg0 : !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func @torch.aten.floor$basic( // CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[ARG_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[RESULT_BUILTIN:.*]] = "tosa.floor"(%[[ARG_BUILTIN]]) : (tensor) -> tensor // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[RESULT_BUILTIN]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[RESULT]] : !torch.vtensor<[?,?],f32> func @torch.aten.floor$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %0 = torch.aten.floor %arg0 : !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func @torch.aten.bitwise_not$basic( // CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[ARG_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[RESULT_BUILTIN:.*]] = "tosa.bitwise_not"(%[[ARG_BUILTIN]]) : (tensor) -> tensor // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[RESULT_BUILTIN]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[RESULT]] : !torch.vtensor<[?,?],f32> func @torch.aten.bitwise_not$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %0 = torch.aten.bitwise_not %arg0 : !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func @torch.aten.ceil$basic( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_2:.*]] = "tosa.ceil"(%[[VAL_1]]) : (tensor) -> tensor // CHECK: %[[VAL_3:.*]] = torch_c.from_builtin_tensor %[[VAL_2]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[VAL_3]] : !torch.vtensor<[?,?],f32> // CHECK: } func @torch.aten.ceil$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %0 = torch.aten.ceil %arg0 : !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func @torch.aten.reciprocal$basic( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_2:.*]] = "tosa.reciprocal"(%[[VAL_1]]) : (tensor) -> tensor // CHECK: %[[VAL_3:.*]] = torch_c.from_builtin_tensor %[[VAL_2]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[VAL_3]] : !torch.vtensor<[?,?],f32> // CHECK: } func @torch.aten.reciprocal$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %0 = torch.aten.reciprocal %arg0 : !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func @torch.aten.add$basic( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>, // CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[VAL_2:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_3:.*]] = torch_c.to_builtin_tensor %[[VAL_1]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_4:.*]] = torch.constant.int 1 // CHECK: %[[VAL_5:.*]] = "tosa.const"() {value = dense<1.000000e+00> : tensor} : () -> tensor // CHECK: %[[VAL_6:.*]] = "tosa.mul"(%[[VAL_3]], %[[VAL_5]]) {shift = 0 : i32} : (tensor, tensor) -> tensor // CHECK: %[[VAL_7:.*]] = "tosa.add"(%[[VAL_2]], %[[VAL_6]]) : (tensor, tensor) -> tensor // CHECK: %[[VAL_8:.*]] = torch_c.from_builtin_tensor %[[VAL_7]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[VAL_8]] : !torch.vtensor<[?,?],f32> // CHECK: } func @torch.aten.add$basic(%arg0: !torch.vtensor<[?, ?],f32>, %arg1: !torch.vtensor<[?, ?],f32>) -> !torch.vtensor<[?, ?],f32> { %int1 = torch.constant.int 1 %0 = torch.aten.add.Tensor %arg0, %arg1, %int1 : !torch.vtensor<[?, ?],f32>, !torch.vtensor<[?, ?],f32>, !torch.int -> !torch.vtensor<[?, ?],f32> return %0 : !torch.vtensor<[?, ?],f32> } // ----- // CHECK-LABEL: func @torch.aten.sub$basic( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>, // CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[VAL_2:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_3:.*]] = torch_c.to_builtin_tensor %[[VAL_1]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_4:.*]] = torch.constant.int 1 // CHECK: %[[VAL_5:.*]] = "tosa.const"() {value = dense<1.000000e+00> : tensor} : () -> tensor // CHECK: %[[VAL_6:.*]] = "tosa.mul"(%[[VAL_3]], %[[VAL_5]]) {shift = 0 : i32} : (tensor, tensor) -> tensor // CHECK: %[[VAL_7:.*]] = "tosa.sub"(%[[VAL_2]], %[[VAL_6]]) : (tensor, tensor) -> tensor // CHECK: %[[VAL_8:.*]] = torch_c.from_builtin_tensor %[[VAL_7]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[VAL_8]] : !torch.vtensor<[?,?],f32> // CHECK: } func @torch.aten.sub$basic(%arg0: !torch.vtensor<[?, ?],f32>, %arg1: !torch.vtensor<[?, ?],f32>) -> !torch.vtensor<[?, ?],f32> { %int1 = torch.constant.int 1 %0 = torch.aten.sub.Tensor %arg0, %arg1, %int1 : !torch.vtensor<[?, ?],f32>, !torch.vtensor<[?, ?],f32>, !torch.int -> !torch.vtensor<[?, ?],f32> return %0 : !torch.vtensor<[?, ?],f32> } // ----- // CHECK-LABEL: func @torch.aten.mul$basic( // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?],f32>, // CHECK-SAME: %[[ARG1:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[ARG0_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[ARG1_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG1]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[RESULT_BUILTIN:.*]] = "tosa.mul"(%[[ARG0_BUILTIN]], %[[ARG1_BUILTIN]]) {shift = 0 : i32} : (tensor, tensor) -> tensor // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[RESULT_BUILTIN]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[RESULT]] : !torch.vtensor<[?,?],f32> func @torch.aten.mul$basic(%arg0: !torch.vtensor<[?, ?],f32>, %arg1: !torch.vtensor<[?, ?],f32>) -> !torch.vtensor<[?, ?],f32> { %0 = torch.aten.mul.Tensor %arg0, %arg1 : !torch.vtensor<[?, ?],f32>, !torch.vtensor<[?, ?],f32> -> !torch.vtensor<[?, ?],f32> return %0 : !torch.vtensor<[?, ?],f32> } // ----- // CHECK-LABEL: func @torch.aten.div$basic( // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?],f32>, // CHECK-SAME: %[[ARG1:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[ARG0_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[ARG1_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG1]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[RCP:.*]] = "tosa.reciprocal"(%[[ARG1_BUILTIN]]) : (tensor) -> tensor // CHECK: %[[RESULT_BUILTIN:.*]] = "tosa.mul"(%[[ARG0_BUILTIN]], %[[RCP]]) {shift = 0 : i32} : (tensor, tensor) -> tensor // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[RESULT_BUILTIN]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[RESULT]] : !torch.vtensor<[?,?],f32> func @torch.aten.div$basic(%arg0: !torch.vtensor<[?, ?],f32>, %arg1: !torch.vtensor<[?, ?],f32>) -> !torch.vtensor<[?, ?],f32> { %0 = torch.aten.div.Tensor %arg0, %arg1 : !torch.vtensor<[?, ?],f32>, !torch.vtensor<[?, ?],f32> -> !torch.vtensor<[?, ?],f32> return %0 : !torch.vtensor<[?, ?],f32> } // ----- // CHECK-LABEL: func @test_reduce_mean_dim$basic( // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,?,?],f32> { // CHECK: %[[ARG0_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?,?,?],f32> -> tensor // CHECK: %[[ARG1:.*]] = torch.constant.int 0 // CHECK: %[[ARG1_BUILTIN:.*]] = torch.prim.ListConstruct %[[ARG1]] : (!torch.int) -> !torch.list // CHECK: %[[ARG2_BUILTIN:.*]] = torch.constant.bool false // CHECK: %[[ARG3_BUILTIN:.*]] = torch.constant.none // CHECK: %[[SUM:.*]] = "tosa.reduce_sum"(%[[ARG0_BUILTIN]]) {axis = 0 : i64} : (tensor) -> tensor<1x?x?x?xf32> // CHECK: %[[RESHAPE_SUM:.*]] = "tosa.reshape"(%[[SUM]]) {new_shape = [-1, -1, -1]} : (tensor<1x?x?x?xf32>) -> tensor // CHECK: %[[CONST:.*]] = "tosa.const"() {value = dense<-1.000000e+00> : tensor} : () -> tensor // CHECK: %[[RESULT_BUILTIN:.*]] = "tosa.mul"(%[[RESHAPE_SUM]], %[[CONST]]) {shift = 0 : i32} : (tensor, tensor) -> tensor // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[RESULT_BUILTIN]] : tensor -> !torch.vtensor<[?,?,?],f32> // CHECK: return %[[RESULT]] : !torch.vtensor<[?,?,?],f32> func @test_reduce_mean_dim$basic(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,?,?],f32> { %dim0 = torch.constant.int 0 %reducedims = torch.prim.ListConstruct %dim0 : (!torch.int) -> !torch.list %keepdims = torch.constant.bool false %dtype = torch.constant.none %0 = torch.aten.mean.dim %arg0, %reducedims, %keepdims, %dtype : !torch.vtensor<[?,?,?,?],f32>, !torch.list, !torch.bool, !torch.none -> !torch.vtensor<[?,?,?],f32> return %0 : !torch.vtensor<[?,?,?],f32> } // ----- // CHECK-LABEL: func @test_reduce_sum_dims$basic( // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,?,?],f32> { // CHECK: %[[ARG0_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?,?,?],f32> -> tensor // CHECK: %[[ARG1_BUILTIN:.*]] = torch.constant.none // CHECK: %[[ARG2_BUILTIN:.*]] = torch.constant.bool false // CHECK: %[[ARG3:.*]] = torch.constant.int 0 // CHECK: %[[ARG3_BUILTIN:.*]] = torch.prim.ListConstruct %[[ARG3]] : (!torch.int) -> !torch.list // CHECK: %[[SUM:.*]] = "tosa.reduce_sum"(%[[ARG0_BUILTIN]]) {axis = 0 : i64} : (tensor) -> tensor<1x?x?x?xf32> // CHECK: %[[RESULT_BUILTIN:.*]] = "tosa.reshape"(%[[SUM]]) {new_shape = [-1, -1, -1]} : (tensor<1x?x?x?xf32>) -> tensor // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[RESULT_BUILTIN]] : tensor -> !torch.vtensor<[?,?,?],f32> // CHECK: return %[[RESULT]] : !torch.vtensor<[?,?,?],f32> func @test_reduce_sum_dims$basic(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,?,?],f32> { %none = torch.constant.none %false = torch.constant.bool false %int0 = torch.constant.int 0 %0 = torch.prim.ListConstruct %int0 : (!torch.int) -> !torch.list %1 = torch.aten.sum.dim_IntList %arg0, %0, %false, %none : !torch.vtensor<[?,?,?,?],f32>, !torch.list, !torch.bool, !torch.none -> !torch.vtensor<[?,?,?],f32> return %1 : !torch.vtensor<[?,?,?],f32> } // ----- // CHECK-LABEL: func @test_reduce_sum$basic( // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[1],f32> { // CHECK: %[[ARG0_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?,?,?],f32> -> tensor // CHECK: %[[ARG1_BUILTIN:.*]] = torch.constant.none // CHECK: %[[REDUCE1:.*]] = "tosa.reduce_sum"(%[[ARG0_BUILTIN]]) {axis = 0 : i64} : (tensor) -> tensor<1x?x?x?xf32> // CHECK: %[[REDUCE2:.*]] = "tosa.reduce_sum"(%[[REDUCE1]]) {axis = 1 : i64} : (tensor<1x?x?x?xf32>) -> tensor<1x1x?x?xf32> // CHECK: %[[REDUCE3:.*]] = "tosa.reduce_sum"(%[[REDUCE2]]) {axis = 2 : i64} : (tensor<1x1x?x?xf32>) -> tensor<1x1x1x?xf32> // CHECK: %[[REDUCE4:.*]] = "tosa.reduce_sum"(%[[REDUCE3]]) {axis = 3 : i64} : (tensor<1x1x1x?xf32>) -> tensor<1x1x1x1xf32> // CHECK: %[[RESULT_BUILTIN:.*]] = "tosa.reshape"(%[[REDUCE4]]) {new_shape = [1]} : (tensor<1x1x1x1xf32>) -> tensor<1xf32> // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[RESULT_BUILTIN]] : tensor<1xf32> -> !torch.vtensor<[1],f32> // CHECK: return %[[RESULT]] : !torch.vtensor<[1],f32> func @test_reduce_sum$basic(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[1],f32> { %none = torch.constant.none %0 = torch.aten.sum %arg0, %none : !torch.vtensor<[?,?,?,?],f32>, !torch.none -> !torch.vtensor<[1],f32> return %0 : !torch.vtensor<[1],f32> } // ----- // CHECK-LABEL: func @test_reduce_all$basic( // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?,?,?],i1>) -> !torch.vtensor<[1],i1> { // CHECK: %[[ARG0_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?,?,?],i1> -> tensor // CHECK: %[[REDUCE1:.*]] = "tosa.reduce_all"(%[[ARG0_BUILTIN]]) {axis = 0 : i64} : (tensor) -> tensor<1x?x?x?xi1> // CHECK: %[[REDUCE2:.*]] = "tosa.reduce_all"(%[[REDUCE1]]) {axis = 1 : i64} : (tensor<1x?x?x?xi1>) -> tensor<1x1x?x?xi1> // CHECK: %[[REDUCE3:.*]] = "tosa.reduce_all"(%[[REDUCE2]]) {axis = 2 : i64} : (tensor<1x1x?x?xi1>) -> tensor<1x1x1x?xi1> // CHECK: %[[REDUCE4:.*]] = "tosa.reduce_all"(%[[REDUCE3]]) {axis = 3 : i64} : (tensor<1x1x1x?xi1>) -> tensor<1x1x1x1xi1> // CHECK: %[[RESULT_BUILTIN:.*]] = "tosa.reshape"(%[[REDUCE4]]) {new_shape = [1]} : (tensor<1x1x1x1xi1>) -> tensor<1xi1> // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[RESULT_BUILTIN]] : tensor<1xi1> -> !torch.vtensor<[1],i1> // CHECK: return %[[RESULT]] : !torch.vtensor<[1],i1> func @test_reduce_all$basic(%arg0: !torch.vtensor<[?,?,?,?],i1>) -> !torch.vtensor<[1],i1> { %0 = torch.aten.all %arg0 : !torch.vtensor<[?,?,?,?],i1> -> !torch.vtensor<[1],i1> return %0 : !torch.vtensor<[1],i1> } // ----- // CHECK-LABEL: func @test_reduce_any_dim$basic( // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?,?,?],i1>) -> !torch.vtensor<[?,?,?],i1> { // CHECK: %[[ARG0_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?,?,?],i1> -> tensor // CHECK: %[[ARG1:.*]] = torch.constant.int 0 // CHECK: %[[ARG2:.*]] = torch.constant.bool false // CHECK: %[[REDUCE:.*]] = "tosa.reduce_any"(%[[ARG0_BUILTIN]]) {axis = 0 : i64} : (tensor) -> tensor<1x?x?x?xi1> // CHECK: %[[RESULT_BUILTIN:.*]] = "tosa.reshape"(%[[REDUCE]]) {new_shape = [-1, -1, -1]} : (tensor<1x?x?x?xi1>) -> tensor // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[RESULT_BUILTIN]] : tensor -> !torch.vtensor<[?,?,?],i1> // CHECK: return %[[RESULT]] : !torch.vtensor<[?,?,?],i1> func @test_reduce_any_dim$basic(%arg0: !torch.vtensor<[?,?,?,?],i1>) -> !torch.vtensor<[?,?,?],i1> { %int0 = torch.constant.int 0 %false = torch.constant.bool false %0 = torch.aten.any.dim %arg0, %int0, %false : !torch.vtensor<[?,?,?,?],i1>, !torch.int, !torch.bool -> !torch.vtensor<[?,?,?],i1> return %0 : !torch.vtensor<[?,?,?],i1> } // ----- // CHECK-LABEL: func @test_reduce_any$basic( // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?,?,?],i1>) -> !torch.vtensor<[1],i1> { // CHECK: %[[ARG0_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?,?,?],i1> -> tensor // CHECK: %[[REDUCE1:.*]] = "tosa.reduce_any"(%[[ARG0_BUILTIN]]) {axis = 0 : i64} : (tensor) -> tensor<1x?x?x?xi1> // CHECK: %[[REDUCE2:.*]] = "tosa.reduce_any"(%[[REDUCE1]]) {axis = 1 : i64} : (tensor<1x?x?x?xi1>) -> tensor<1x1x?x?xi1> // CHECK: %[[REDUCE3:.*]] = "tosa.reduce_any"(%[[REDUCE2]]) {axis = 2 : i64} : (tensor<1x1x?x?xi1>) -> tensor<1x1x1x?xi1> // CHECK: %[[REDUCE4:.*]] = "tosa.reduce_any"(%[[REDUCE3]]) {axis = 3 : i64} : (tensor<1x1x1x?xi1>) -> tensor<1x1x1x1xi1> // CHECK: %[[RESULT_BUILTIN:.*]] = "tosa.reshape"(%[[REDUCE4]]) {new_shape = [1]} : (tensor<1x1x1x1xi1>) -> tensor<1xi1> // CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[RESULT_BUILTIN]] : tensor<1xi1> -> !torch.vtensor<[1],i1> // CHECK: return %[[RESULT]] : !torch.vtensor<[1],i1> func @test_reduce_any$basic(%arg0: !torch.vtensor<[?,?,?,?],i1>) -> !torch.vtensor<[1],i1> { %0 = torch.aten.any %arg0 : !torch.vtensor<[?,?,?,?],i1> -> !torch.vtensor<[1],i1> return %0 : !torch.vtensor<[1],i1> } // ----- // CHECK-LABEL: func @torch.aten.rsqrt$basic( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_2:.*]] = "tosa.rsqrt"(%[[VAL_1]]) : (tensor) -> tensor // CHECK: %[[VAL_3:.*]] = torch_c.from_builtin_tensor %[[VAL_2]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[VAL_3]] : !torch.vtensor<[?,?],f32> // CHECK: } func @torch.aten.rsqrt$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %0 = torch.aten.rsqrt %arg0 : !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func @torch.aten.maximum$basic( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>, // CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[VAL_2:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_3:.*]] = torch_c.to_builtin_tensor %[[VAL_1]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_4:.*]] = "tosa.maximum"(%[[VAL_2]], %[[VAL_3]]) : (tensor, tensor) -> tensor // CHECK: %[[VAL_5:.*]] = torch_c.from_builtin_tensor %[[VAL_4]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[VAL_5]] : !torch.vtensor<[?,?],f32> // CHECK: } func @torch.aten.maximum$basic(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %0 = torch.aten.maximum %arg0, %arg1 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func @torch.aten.minimum$basic( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>, // CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[VAL_2:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_3:.*]] = torch_c.to_builtin_tensor %[[VAL_1]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_4:.*]] = "tosa.minimum"(%[[VAL_2]], %[[VAL_3]]) : (tensor, tensor) -> tensor // CHECK: %[[VAL_5:.*]] = torch_c.from_builtin_tensor %[[VAL_4]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[VAL_5]] : !torch.vtensor<[?,?],f32> // CHECK: } func @torch.aten.minimum$basic(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %0 = torch.aten.minimum %arg0, %arg1 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func @torch.aten.pow.Tensor_Scalar$basic( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_2:.*]] = torch.constant.float 3.123400e+00 // CHECK: %[[VAL_3:.*]] = "tosa.const"() {value = dense<3.123400e+00> : tensor} : () -> tensor // CHECK: %[[VAL_4:.*]] = "tosa.pow"(%[[VAL_1]], %[[VAL_3]]) : (tensor, tensor) -> tensor // CHECK: %[[VAL_5:.*]] = torch_c.from_builtin_tensor %[[VAL_4]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[VAL_5]] : !torch.vtensor<[?,?],f32> // CHECK: } func @torch.aten.pow.Tensor_Scalar$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %fp0 = torch.constant.float 3.123400e+00 %0 = torch.aten.pow.Tensor_Scalar %arg0, %fp0 : !torch.vtensor<[?,?],f32>, !torch.float -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func @torch.aten.rsub.Scalar$basic( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_2:.*]] = torch.constant.float 3.123400e+00 // CHECK: %[[VAL_3:.*]] = torch.constant.float 6.432100e+00 // CHECK: %[[VAL_4:.*]] = "tosa.const"() {value = dense<3.123400e+00> : tensor} : () -> tensor // CHECK: %[[VAL_5:.*]] = "tosa.const"() {value = dense<6.432100e+00> : tensor} : () -> tensor // CHECK: %[[VAL_6:.*]] = "tosa.mul"(%[[VAL_1]], %[[VAL_5]]) {shift = 0 : i32} : (tensor, tensor) -> tensor // CHECK: %[[VAL_7:.*]] = "tosa.sub"(%[[VAL_4]], %[[VAL_6]]) : (tensor, tensor) -> tensor // CHECK: %[[VAL_8:.*]] = torch_c.from_builtin_tensor %[[VAL_7]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[VAL_8]] : !torch.vtensor<[?,?],f32> // CHECK: } func @torch.aten.rsub.Scalar$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %other = torch.constant.float 3.123400e+00 %alpha = torch.constant.float 6.432100e+00 %0 = torch.aten.rsub.Scalar %arg0, %other, %alpha : !torch.vtensor<[?,?],f32>, !torch.float, !torch.float -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func @torch.aten.rsub.Scalar$basic( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_2:.*]] = torch.constant.float 3.123400e+00 // CHECK: %[[VAL_3:.*]] = torch.constant.int 1 // CHECK: %[[VAL_4:.*]] = "tosa.const"() {value = dense<3.123400e+00> : tensor} : () -> tensor // CHECK: %[[VAL_5:.*]] = "tosa.const"() {value = dense<1.000000e+00> : tensor} : () -> tensor // CHECK: %[[VAL_6:.*]] = "tosa.mul"(%[[VAL_1]], %[[VAL_5]]) {shift = 0 : i32} : (tensor, tensor) -> tensor // CHECK: %[[VAL_7:.*]] = "tosa.sub"(%[[VAL_4]], %[[VAL_6]]) : (tensor, tensor) -> tensor // CHECK: %[[VAL_8:.*]] = torch_c.from_builtin_tensor %[[VAL_7]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[VAL_8]] : !torch.vtensor<[?,?],f32> // CHECK: } func @torch.aten.rsub.Scalar$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %other = torch.constant.float 3.123400e+00 %alpha = torch.constant.int 1 %0 = torch.aten.rsub.Scalar %arg0, %other, %alpha : !torch.vtensor<[?,?],f32>, !torch.float, !torch.int -> !torch.vtensor<[?,?],f32> return %0 : !torch.vtensor<[?,?],f32> } // ----- // CHECK-LABEL: func @torch.aten.gt.Tensor$basic( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>, // CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],i1> { // CHECK: %[[VAL_2:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_3:.*]] = torch_c.to_builtin_tensor %[[VAL_1]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_4:.*]] = "tosa.greater"(%[[VAL_2]], %[[VAL_3]]) : (tensor, tensor) -> tensor // CHECK: %[[VAL_5:.*]] = torch_c.from_builtin_tensor %[[VAL_4]] : tensor -> !torch.vtensor<[?,?],i1> // CHECK: return %[[VAL_5]] : !torch.vtensor<[?,?],i1> // CHECK: } func @torch.aten.gt.Tensor$basic(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],i1> { %0 = torch.aten.gt.Tensor %arg0, %arg1 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],i1> return %0 : !torch.vtensor<[?,?],i1> } // ----- // CHECK-LABEL: func @torch.aten.lt.Tensor$basic( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>, // CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],i1> { // CHECK: %[[VAL_2:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_3:.*]] = torch_c.to_builtin_tensor %[[VAL_1]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_4:.*]] = "tosa.greater"(%[[VAL_3]], %[[VAL_2]]) : (tensor, tensor) -> tensor // CHECK: %[[VAL_5:.*]] = torch_c.from_builtin_tensor %[[VAL_4]] : tensor -> !torch.vtensor<[?,?],i1> // CHECK: return %[[VAL_5]] : !torch.vtensor<[?,?],i1> // CHECK: } func @torch.aten.lt.Tensor$basic(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],i1> { %0 = torch.aten.lt.Tensor %arg0, %arg1 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],i1> return %0 : !torch.vtensor<[?,?],i1> } // ----- // CHECK-LABEL: func @torch.aten.eq.Tensor$basic( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>, // CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],i1> { // CHECK: %[[VAL_2:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_3:.*]] = torch_c.to_builtin_tensor %[[VAL_1]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_4:.*]] = "tosa.equal"(%[[VAL_2]], %[[VAL_3]]) : (tensor, tensor) -> tensor // CHECK: %[[VAL_5:.*]] = torch_c.from_builtin_tensor %[[VAL_4]] : tensor -> !torch.vtensor<[?,?],i1> // CHECK: return %[[VAL_5]] : !torch.vtensor<[?,?],i1> // CHECK: } func @torch.aten.eq.Tensor$basic(%arg0: !torch.vtensor<[?,?],f32>, %arg1: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],i1> { %0 = torch.aten.eq.Tensor %arg0, %arg1 : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,?],f32> -> !torch.vtensor<[?,?],i1> return %0 : !torch.vtensor<[?,?],i1> } // ----- // CHECK-LABEL: func @torch.aten.reshape$basic( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?,?,?],f32> -> tensor // CHECK: %[[VAL_2:.*]] = torch.constant.int -1 // CHECK: %[[VAL_3:.*]] = torch.prim.ListConstruct %[[VAL_2]] : (!torch.int) -> !torch.list // CHECK: %[[VAL_4:.*]] = "tosa.reshape"(%[[VAL_1]]) {new_shape = [-1]} : (tensor) -> tensor // CHECK: %[[VAL_5:.*]] = torch_c.from_builtin_tensor %[[VAL_4]] : tensor -> !torch.vtensor<[?],f32> // CHECK: return %[[VAL_5]] : !torch.vtensor<[?],f32> // CHECK: } func @torch.aten.reshape$basic(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?],f32> { %dim0 = torch.constant.int -1 %shape = torch.prim.ListConstruct %dim0 : (!torch.int) -> !torch.list %0 = torch.aten.reshape %arg0, %shape : !torch.vtensor<[?,?,?,?],f32>, !torch.list -> !torch.vtensor<[?],f32> return %0 : !torch.vtensor<[?],f32> } // ----- // CHECK-LABEL: func @forward( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[10,4,3],f32>) -> !torch.vtensor<[10,4,3],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[10,4,3],f32> -> tensor<10x4x3xf32> // CHECK: %[[VAL_2:.*]] = "tosa.const"() {value = dense<[5.000000e-01, 4.000000e-01, 3.000000e-01, 6.000000e-01]> : tensor<4xf32>} : () -> tensor<4xf32> // CHECK: %[[VAL_3:.*]] = "tosa.const"() {value = dense<[3.000000e+00, 2.000000e+00, 4.000000e+00, 5.000000e+00]> : tensor<4xf32>} : () -> tensor<4xf32> // CHECK: %[[VAL_4:.*]] = torch.constant.float 1.000000e-01 // CHECK: %[[VAL_5:.*]] = torch.constant.float 1.000000e-05 // CHECK: %[[VAL_6:.*]] = torch.constant.bool true // CHECK: %[[VAL_7:.*]] = torch.constant.bool false // CHECK: %[[VAL_8:.*]] = "tosa.reshape"(%[[VAL_2]]) {new_shape = [4, 1]} : (tensor<4xf32>) -> tensor<4x1xf32> // CHECK: %[[VAL_9:.*]] = "tosa.reshape"(%[[VAL_3]]) {new_shape = [4, 1]} : (tensor<4xf32>) -> tensor<4x1xf32> // CHECK: %[[VAL_10:.*]] = "tosa.reshape"(%[[VAL_3]]) {new_shape = [4, 1]} : (tensor<4xf32>) -> tensor<4x1xf32> // CHECK: %[[VAL_11:.*]] = "tosa.reshape"(%[[VAL_2]]) {new_shape = [4, 1]} : (tensor<4xf32>) -> tensor<4x1xf32> // CHECK: %[[VAL_12:.*]] = "tosa.const"() {value = dense<9.99999974E-6> : tensor} : () -> tensor // CHECK: %[[VAL_13:.*]] = "tosa.sub"(%[[VAL_1]], %[[VAL_8]]) : (tensor<10x4x3xf32>, tensor<4x1xf32>) -> tensor<10x4x3xf32> // CHECK: %[[VAL_14:.*]] = "tosa.add"(%[[VAL_9]], %[[VAL_12]]) : (tensor<4x1xf32>, tensor) -> tensor<4x1xf32> // CHECK: %[[VAL_15:.*]] = "tosa.rsqrt"(%[[VAL_14]]) : (tensor<4x1xf32>) -> tensor<4x1xf32> // CHECK: %[[VAL_16:.*]] = "tosa.mul"(%[[VAL_13]], %[[VAL_15]]) {shift = 0 : i32} : (tensor<10x4x3xf32>, tensor<4x1xf32>) -> tensor<10x4x3xf32> // CHECK: %[[VAL_17:.*]] = "tosa.mul"(%[[VAL_16]], %[[VAL_10]]) {shift = 0 : i32} : (tensor<10x4x3xf32>, tensor<4x1xf32>) -> tensor<10x4x3xf32> // CHECK: %[[VAL_18:.*]] = "tosa.add"(%[[VAL_17]], %[[VAL_11]]) : (tensor<10x4x3xf32>, tensor<4x1xf32>) -> tensor<10x4x3xf32> // CHECK: %[[VAL_19:.*]] = torch_c.from_builtin_tensor %[[VAL_18]] : tensor<10x4x3xf32> -> !torch.vtensor<[10,4,3],f32> // CHECK: return %[[VAL_19]] : !torch.vtensor<[10,4,3],f32> // CHECK: } func @forward(%arg0: !torch.vtensor<[10,4,3],f32> ) -> !torch.vtensor<[10,4,3],f32> { %0 = torch.vtensor.literal(dense<[5.000000e-01, 4.000000e-01, 3.000000e-01, 6.000000e-01]> : tensor<4xf32>) : !torch.vtensor<[4],f32> %1 = torch.vtensor.literal(dense<[3.000000e+00, 2.000000e+00, 4.000000e+00, 5.000000e+00]> : tensor<4xf32>) : !torch.vtensor<[4],f32> %float1.000000e-01 = torch.constant.float 1.000000e-01 %float1.000000e-05 = torch.constant.float 1.000000e-05 %true = torch.constant.bool true %false = torch.constant.bool false %2 = torch.aten.batch_norm %arg0, %1, %0, %0, %1, %false, %float1.000000e-01, %float1.000000e-05, %true : !torch.vtensor<[10,4,3],f32>, !torch.vtensor<[4],f32>, !torch.vtensor<[4],f32>, !torch.vtensor<[4],f32>, !torch.vtensor<[4],f32>, !torch.bool, !torch.float, !torch.float, !torch.bool -> !torch.vtensor<[10,4,3],f32> return %2 : !torch.vtensor<[10,4,3],f32> } // ----- // CHECK-LABEL: func @forward( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[10,3,8,9,3,4],f32>) -> !torch.vtensor<[10,3,?,4],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[10,3,8,9,3,4],f32> -> tensor<10x3x8x9x3x4xf32> // CHECK: %[[VAL_2:.*]] = torch.constant.int 4 // CHECK: %[[VAL_3:.*]] = torch.constant.int 2 // CHECK: %[[VAL_4:.*]] = "tosa.reshape"(%[[VAL_1]]) {new_shape = [10, 3, 216, 4]} : (tensor<10x3x8x9x3x4xf32>) -> tensor<10x3x216x4xf32> // CHECK: %[[VAL_5:.*]] = tensor.cast %[[VAL_4]] : tensor<10x3x216x4xf32> to tensor<10x3x?x4xf32> // CHECK: %[[VAL_6:.*]] = torch_c.from_builtin_tensor %[[VAL_5]] : tensor<10x3x?x4xf32> -> !torch.vtensor<[10,3,?,4],f32> // CHECK: return %[[VAL_6]] : !torch.vtensor<[10,3,?,4],f32> // CHECK: } func @forward(%arg0: !torch.vtensor<[10,3,8,9,3,4],f32> ) -> !torch.vtensor<[10,3,?,4],f32> { %int4 = torch.constant.int 4 %int2 = torch.constant.int 2 %0 = torch.aten.flatten.using_ints %arg0, %int2, %int4 : !torch.vtensor<[10,3,8,9,3,4],f32>, !torch.int, !torch.int -> !torch.vtensor<[10,3,?,4],f32> return %0 : !torch.vtensor<[10,3,?,4],f32> } // ----- // CHECK-LABEL: func @forward( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[5,2,2,3],f32>, // CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[2,2,3],f32>, // CHECK-SAME: %[[VAL_2:.*]]: !torch.vtensor<[2,2,3],f32>) -> !torch.vtensor<[5,2,2,3],f32> { // CHECK: %[[VAL_3:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[5,2,2,3],f32> -> tensor<5x2x2x3xf32> // CHECK: %[[VAL_4:.*]] = torch_c.to_builtin_tensor %[[VAL_1]] : !torch.vtensor<[2,2,3],f32> -> tensor<2x2x3xf32> // CHECK: %[[VAL_5:.*]] = torch_c.to_builtin_tensor %[[VAL_2]] : !torch.vtensor<[2,2,3],f32> -> tensor<2x2x3xf32> // CHECK: %[[VAL_6:.*]] = torch.constant.float 5.000000e-01 // CHECK: %[[VAL_7:.*]] = torch.constant.int 3 // CHECK: %[[VAL_8:.*]] = torch.constant.int 2 // CHECK: %[[VAL_9:.*]] = torch.prim.ListConstruct %[[VAL_8]], %[[VAL_8]], %[[VAL_7]] : (!torch.int, !torch.int, !torch.int) -> !torch.list // CHECK: %[[VAL_10:.*]] = "tosa.const"() {value = dense<1.200000e+01> : tensor<1xf32>} : () -> tensor<1xf32> // CHECK: %[[VAL_11:.*]] = "tosa.reciprocal"(%[[VAL_10]]) : (tensor<1xf32>) -> tensor<1xf32> // CHECK: %[[VAL_12:.*]] = "tosa.reduce_sum"(%[[VAL_3]]) {axis = 3 : i64} : (tensor<5x2x2x3xf32>) -> tensor<5x2x2x1xf32> // CHECK: %[[VAL_13:.*]] = "tosa.reduce_sum"(%[[VAL_12]]) {axis = 2 : i64} : (tensor<5x2x2x1xf32>) -> tensor<5x2x1xf32> // CHECK: %[[VAL_14:.*]] = "tosa.reduce_sum"(%[[VAL_13]]) {axis = 1 : i64} : (tensor<5x2x1xf32>) -> tensor<5x1xf32> // CHECK: %[[VAL_15:.*]] = "tosa.reshape"(%[[VAL_14]]) {new_shape = [5, 1, 1, 1]} : (tensor<5x1xf32>) -> tensor<5x1x1x1xf32> // CHECK: %[[VAL_16:.*]] = "tosa.mul"(%[[VAL_15]], %[[VAL_11]]) {shift = 0 : i32} : (tensor<5x1x1x1xf32>, tensor<1xf32>) -> tensor<5x1x1x1xf32> // CHECK: %[[VAL_17:.*]] = "tosa.sub"(%[[VAL_3]], %[[VAL_16]]) : (tensor<5x2x2x3xf32>, tensor<5x1x1x1xf32>) -> tensor<5x2x2x3xf32> // CHECK: %[[VAL_18:.*]] = "tosa.mul"(%[[VAL_17]], %[[VAL_17]]) {shift = 0 : i32} : (tensor<5x2x2x3xf32>, tensor<5x2x2x3xf32>) -> tensor<5x2x2x3xf32> // CHECK: %[[VAL_19:.*]] = "tosa.reduce_sum"(%[[VAL_18]]) {axis = 3 : i64} : (tensor<5x2x2x3xf32>) -> tensor<5x2x2x1xf32> // CHECK: %[[VAL_20:.*]] = "tosa.reduce_sum"(%[[VAL_19]]) {axis = 2 : i64} : (tensor<5x2x2x1xf32>) -> tensor<5x2x1xf32> // CHECK: %[[VAL_21:.*]] = "tosa.reduce_sum"(%[[VAL_20]]) {axis = 1 : i64} : (tensor<5x2x1xf32>) -> tensor<5x1xf32> // CHECK: %[[VAL_22:.*]] = "tosa.reshape"(%[[VAL_21]]) {new_shape = [5, 1, 1, 1]} : (tensor<5x1xf32>) -> tensor<5x1x1x1xf32> // CHECK: %[[VAL_23:.*]] = "tosa.mul"(%[[VAL_22]], %[[VAL_11]]) {shift = 0 : i32} : (tensor<5x1x1x1xf32>, tensor<1xf32>) -> tensor<5x1x1x1xf32> // CHECK: %[[VAL_24:.*]] = "tosa.reshape"(%[[VAL_4]]) {new_shape = [1, 2, 2, 3]} : (tensor<2x2x3xf32>) -> tensor<1x2x2x3xf32> // CHECK: %[[VAL_25:.*]] = "tosa.reshape"(%[[VAL_5]]) {new_shape = [1, 2, 2, 3]} : (tensor<2x2x3xf32>) -> tensor<1x2x2x3xf32> // CHECK: %[[VAL_26:.*]] = "tosa.const"() {value = dense<5.000000e-01> : tensor} : () -> tensor // CHECK: %[[VAL_27:.*]] = "tosa.sub"(%[[VAL_3]], %[[VAL_16]]) : (tensor<5x2x2x3xf32>, tensor<5x1x1x1xf32>) -> tensor<5x2x2x3xf32> // CHECK: %[[VAL_28:.*]] = "tosa.add"(%[[VAL_23]], %[[VAL_26]]) : (tensor<5x1x1x1xf32>, tensor) -> tensor<5x1x1x1xf32> // CHECK: %[[VAL_29:.*]] = "tosa.rsqrt"(%[[VAL_28]]) : (tensor<5x1x1x1xf32>) -> tensor<5x1x1x1xf32> // CHECK: %[[VAL_30:.*]] = "tosa.mul"(%[[VAL_27]], %[[VAL_29]]) {shift = 0 : i32} : (tensor<5x2x2x3xf32>, tensor<5x1x1x1xf32>) -> tensor<5x2x2x3xf32> // CHECK: %[[VAL_31:.*]] = "tosa.mul"(%[[VAL_30]], %[[VAL_24]]) {shift = 0 : i32} : (tensor<5x2x2x3xf32>, tensor<1x2x2x3xf32>) -> tensor<5x2x2x3xf32> // CHECK: %[[VAL_32:.*]] = "tosa.add"(%[[VAL_31]], %[[VAL_25]]) : (tensor<5x2x2x3xf32>, tensor<1x2x2x3xf32>) -> tensor<5x2x2x3xf32> // CHECK: %[[VAL_33:.*]] = torch_c.from_builtin_tensor %[[VAL_32]] : tensor<5x2x2x3xf32> -> !torch.vtensor<[5,2,2,3],f32> // CHECK: return %[[VAL_33]] : !torch.vtensor<[5,2,2,3],f32> // CHECK: } func @forward(%arg0: !torch.vtensor<[5,2,2,3],f32> , %arg1: !torch.vtensor<[2,2,3],f32> , %arg2: !torch.vtensor<[2,2,3],f32> ) -> !torch.vtensor<[5,2,2,3],f32> { %float5.000000e-01 = torch.constant.float 5.000000e-01 %int3 = torch.constant.int 3 %int2 = torch.constant.int 2 %0 = torch.prim.ListConstruct %int2, %int2, %int3 : (!torch.int, !torch.int, !torch.int) -> !torch.list %result0, %result1, %result2 = torch.aten.native_layer_norm %arg0, %0, %arg1, %arg2, %float5.000000e-01 : !torch.vtensor<[5,2,2,3],f32>, !torch.list, !torch.vtensor<[2,2,3],f32>, !torch.vtensor<[2,2,3],f32>, !torch.float -> !torch.vtensor<[5,2,2,3],f32>, !torch.vtensor<[3],f32>, !torch.vtensor<[3],f32> return %result0 : !torch.vtensor<[5,2,2,3],f32> } // ----- // CHECK-LABEL: func @forward( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[3,4,2],f32>) -> !torch.vtensor<[3,2,4],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[3,4,2],f32> -> tensor<3x4x2xf32> // CHECK: %[[VAL_2:.*]] = torch.constant.int 1 // CHECK: %[[VAL_3:.*]] = torch.constant.int 2 // CHECK: %[[VAL_4:.*]] = torch.constant.int 0 // CHECK: %[[VAL_5:.*]] = torch.prim.ListConstruct %[[VAL_4]], %[[VAL_3]], %[[VAL_2]] : (!torch.int, !torch.int, !torch.int) -> !torch.list // CHECK: %[[VAL_6:.*]] = "tosa.const"() {value = dense<[0, 2, 1]> : tensor<3xi64>} : () -> tensor<3xi64> // CHECK: %[[VAL_7:.*]] = "tosa.transpose"(%[[VAL_1]], %[[VAL_6]]) : (tensor<3x4x2xf32>, tensor<3xi64>) -> tensor<3x2x4xf32> // CHECK: %[[VAL_8:.*]] = torch_c.from_builtin_tensor %[[VAL_7]] : tensor<3x2x4xf32> -> !torch.vtensor<[3,2,4],f32> // CHECK: return %[[VAL_8]] : !torch.vtensor<[3,2,4],f32> // CHECK: } func @forward(%arg0: !torch.vtensor<[3,4,2],f32> ) -> !torch.vtensor<[3,2,4],f32> { %int1 = torch.constant.int 1 %int2 = torch.constant.int 2 %int0 = torch.constant.int 0 %0 = torch.prim.ListConstruct %int0, %int2, %int1 : (!torch.int, !torch.int, !torch.int) -> !torch.list %1 = torch.aten.permute %arg0, %0 : !torch.vtensor<[3,4,2],f32>, !torch.list -> !torch.vtensor<[3,2,4],f32> return %1 : !torch.vtensor<[3,2,4],f32> }