// RUN: torch-mlir-opt <%s -convert-torch-to-linalg -split-input-file -verify-diagnostics | FileCheck %s // ----- #CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }> // CHECK: #[[$CSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }> // CHECK-LABEL: func.func @sum( // CHECK-SAME: %[[A:.*]]: !torch.vtensor<[64,64],f32,#[[$CSR]]>) -> !torch.vtensor<[],f32> // CHECK: %[[S:.*]] = torch_c.to_builtin_tensor %[[A]] : !torch.vtensor<[64,64],f32,#[[$CSR]]> -> tensor<64x64xf32, #[[$CSR]]> // CHECK: linalg.generic {{{.*}}} ins(%[[S]] : tensor<64x64xf32, #[[$CSR]]>) func.func @sum(%arg0: !torch.vtensor<[64,64],f32,#CSR>) -> !torch.vtensor<[],f32> { %none = torch.constant.none %0 = torch.aten.sum %arg0, %none : !torch.vtensor<[64,64],f32,#CSR>, !torch.none -> !torch.vtensor<[],f32> return %0 : !torch.vtensor<[],f32> } // ----- #CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }> // CHECK: #[[$CSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }> // CHECK-LABEL: func.func @SpMM( // CHECK-SAME: %[[A:.*]]: !torch.vtensor<[8,16],f32,#[[$CSR]]>, // CHECK-SAME: %[[B:.*]]: !torch.vtensor<[16,8],f32>) -> !torch.vtensor<[8,8],f32> // CHECK: %[[S:.*]] = torch_c.to_builtin_tensor %[[A]] : !torch.vtensor<[8,16],f32,#[[$CSR]]> -> tensor<8x16xf32, #[[$CSR]]> // CHECK: %[[T:.*]] = torch_c.to_builtin_tensor %[[B]] : !torch.vtensor<[16,8],f32> -> tensor<16x8xf32> // CHECK: linalg.matmul ins(%[[S]], %[[T]] : tensor<8x16xf32, #[[$CSR]]>, tensor<16x8xf32>) func.func @SpMM(%arg0: !torch.vtensor<[8,16],f32,#CSR>, %arg1: !torch.vtensor<[16,8],f32>) -> !torch.vtensor<[8,8],f32> { %0 = torch.aten.matmul %arg0, %arg1 : !torch.vtensor<[8,16],f32,#CSR>, !torch.vtensor<[16,8],f32> -> !torch.vtensor<[8,8],f32> return %0 : !torch.vtensor<[8,8],f32> }