# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # Also available under a BSD-style license. See LICENSE. import torch from torch_mlir_e2e_test.torchscript.framework import TestUtils from torch_mlir_e2e_test.torchscript.registry import register_test_case from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export # ============================================================================== class SliceModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, x): return x[0:5:1, 1:3:1, 2:4:1] @register_test_case(module_factory=lambda: SliceModule()) def SliceModule_basic(module, tu: TestUtils): module.forward(tu.rand(6,4,7)) # ============================================================================== # This Test currently xfails due to https://github.com/llvm/torch-mlir/issues/448 class SliceOutOfUpperBoundIndexModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, x): return x[:8, :5, 8:] @register_test_case(module_factory=lambda: SliceOutOfUpperBoundIndexModule()) def SliceOutOfUpperBoundIndexModule_basic(module, tu: TestUtils): module.forward(tu.rand(6,4,7)) # ============================================================================== class SliceOutOfLowerBoundEndIndexModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, x): return x[:-8,-7:,:] @register_test_case(module_factory=lambda: SliceOutOfLowerBoundEndIndexModule()) def SliceOutOfLowerBoundEndIndexModule_basic(module, tu: TestUtils): module.forward(tu.rand(6,4,7)) # ============================================================================== class SliceOutOfLowerBoundStartIndexModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, x): return x[-8:3:1, 1:3:1, 2:4:1] @register_test_case(module_factory=lambda: SliceOutOfLowerBoundStartIndexModule()) def SliceOutOfLowerBoundStartIndexModule_basic(module, tu: TestUtils): module.forward(tu.rand(6,4,7)) # ============================================================================== # This Test currently xfails due to https://github.com/llvm/torch-mlir/issues/448 class SliceEndSleStartModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, x): return x[:0, 4:3, :-7] @register_test_case(module_factory=lambda: SliceEndSleStartModule()) def SliceEndSleStartModule_basic(module, tu: TestUtils): module.forward(tu.rand(6,4,7)) # ============================================================================== # This Test currently xfails due to https://github.com/llvm/torch-mlir/issues/448 class SliceStartEqEndModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, x): return x[5:5, 3:3, -1:] @register_test_case(module_factory=lambda: SliceStartEqEndModule()) def SliceStartEqEndModule_basic(module, tu: TestUtils): module.forward(tu.rand(6,4,7)) # ============================================================================== class SliceSizeTwoStepModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, x): return x[0:5:2, 0:3:2, 0:4:2] @register_test_case(module_factory=lambda: SliceSizeTwoStepModule()) def SliceSizeTwoStepModule_basic(module, tu: TestUtils): module.forward(tu.rand(10,5,17)) # ============================================================================== class SliceNegIdxModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return x[:-1, -2:-1] @register_test_case(module_factory=lambda: SliceNegIdxModule()) def SliceNegIdxModule_basic(module, tu: TestUtils): module.forward(tu.rand(3,9)) # ============================================================================== class SliceSingleIdxModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return x[0] @register_test_case(module_factory=lambda: SliceSingleIdxModule()) def SliceSingleIdxModule_basic(module, tu: TestUtils): module.forward(tu.rand(6,8)) # ============================================================================== class SliceWholeTensorModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return x[:, :] @register_test_case(module_factory=lambda: SliceWholeTensorModule()) def SliceWholeTensorModule_basic(module, tu: TestUtils): module.forward(tu.rand(6,8)) # ============================================================================== class SelectIntModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.int64, True), ]) def forward(self, x): return x.select(0,0) @register_test_case(module_factory=lambda: SelectIntModule()) def SelectIntModule_basic(module, tu: TestUtils): module.forward(torch.randint(10, (5,5))) # ==============================================================================