# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # Also available under a BSD-style license. See LICENSE. import sys from PIL import Image import requests import torch import torchvision.models as models from torchvision import transforms from torch_mlir import torchscript from torch_mlir_e2e_test.linalg_on_tensors_backends import refbackend def load_and_preprocess_image(url: str): headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36' } img = Image.open(requests.get(url, headers=headers, stream=True).raw).convert("RGB") # preprocessing pipeline preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) img_preprocessed = preprocess(img) return torch.unsqueeze(img_preprocessed, 0) def load_labels(): classes_text = requests.get( "https://raw.githubusercontent.com/cathyzhyi/ml-data/main/imagenet-classes.txt", stream=True, ).text labels = [line.strip() for line in classes_text.splitlines()] return labels def top3_possibilities(res): _, indexes = torch.sort(res, descending=True) percentage = torch.nn.functional.softmax(res, dim=1)[0] * 100 top3 = [(labels[idx], percentage[idx].item()) for idx in indexes[0][:3]] return top3 def predictions(torch_func, jit_func, img, labels): golden_prediction = top3_possibilities(torch_func(img)) print("PyTorch prediction") print(golden_prediction) prediction = top3_possibilities(torch.from_numpy(jit_func(img.numpy()))) print("torch-mlir prediction") print(prediction) image_url = "https://upload.wikimedia.org/wikipedia/commons/2/26/YellowLabradorLooking_new.jpg" print("load image from " + image_url, file=sys.stderr) img = load_and_preprocess_image(image_url) labels = load_labels() resnet18 = models.resnet18(pretrained=True) resnet18.train(False) module = torchscript.compile(resnet18, torch.ones(1, 3, 224, 224), output_type="linalg-on-tensors") backend = refbackend.RefBackendLinalgOnTensorsBackend() compiled = backend.compile(module) jit_module = backend.load(compiled) predictions(resnet18.forward, jit_module.forward, img, labels)