//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // Also available under a BSD-style license. See LICENSE. // //===----------------------------------------------------------------------===// #include "PassDetail.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Linalg/IR/Linalg.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Transforms/DialectConversion.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" #include "torch-mlir/Conversion/Utils/Utils.h" #include "torch-mlir/Dialect/Torch/IR/TorchDialect.h" #include "torch-mlir/Dialect/Torch/IR/TorchOps.h" #include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h" #include "torch-mlir/Dialect/TorchConversion/Transforms/Passes.h" #include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h" using namespace mlir; using namespace mlir::torch; using namespace mlir::torch::Torch; namespace { class ConvertCustomQuantizedMatmulOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(OperatorOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { if (op.getName().str() != "quant.matmul_rhs_group_quant") { return failure(); } Location loc = op->getLoc(); if (failed(verifyLinalgCompatibleTypes(op, rewriter))) { return failure(); } // get inputs: lhs, rhsQuant, scales, zps Value lhs = adaptor.getOperands()[0]; auto lhsType = lhs.getType().cast(); if (!lhsType) { return failure(); } auto lhsShape = lhsType.getShape(); int lhsReductDimSize = lhsShape.back(); Value rhsQuant = adaptor.getOperands()[1]; auto rhsType = rhsQuant.getType().cast(); if (!rhsType) { return failure(); } auto rhsShape = rhsType.getShape(); int rhsReductDimSize = rhsShape.back(); Type rhsElementType = rhsType.getElementType(); Value scales = adaptor.getOperands()[2]; Value zps = adaptor.getOperands()[3]; Value unpackedTypeWidth = adaptor.getOperands()[4]; Value groupSize = adaptor.getOperands()[5]; auto getConstantIntegerFromDefiningOp = [](Value operand, int &extractedInt) { auto castOp = dyn_cast(operand.getDefiningOp()); if (!castOp) { return failure(); } auto constOp = dyn_cast(castOp.getOperand(0).getDefiningOp()); if (!constOp) { return failure(); } extractedInt = constOp.getValue(); return success(); }; int gs; if (failed(getConstantIntegerFromDefiningOp(groupSize, gs))) { return failure(); } int unpackedBitWidth; if (failed(getConstantIntegerFromDefiningOp(unpackedTypeWidth, unpackedBitWidth))) { return failure(); } if (unpackedBitWidth != static_cast(rhsElementType.getIntOrFloatBitWidth())) { return failure(); } // get outputs Type newResultType = getTypeConverter()->convertType(op.getType(0)); auto resultType = newResultType.cast(); if (!resultType) { return failure(); } auto resultShape = resultType.getShape(); Type elementType = resultType.getElementType(); // expand lhs std::vector lhsExpandedShape = {lhsShape[0], lhsShape[1], lhsReductDimSize / gs, gs}; RankedTensorType lhsExpandedType = RankedTensorType::get(lhsExpandedShape, elementType); SmallVector lhsReassociation = {{0}, {1}, {2, 3}}; Value lhsExpanded = rewriter.create( loc, lhsExpandedType, lhs, lhsReassociation); // expand rhs std::vector rhsExpandedShape = {rhsShape[0], rhsReductDimSize/gs, gs}; RankedTensorType rhsExpandedType = RankedTensorType::get(rhsExpandedShape, rhsElementType); SmallVector rhsReassociation = {{0}, {1, 2}}; Value rhsExpanded = rewriter.create( loc, rhsExpandedType, rhsQuant, rhsReassociation); Value cst0 = rewriter.create( loc, FloatAttr::get(elementType, 0.0)); Value emptyDequant = rewriter.create( loc, rhsExpandedShape, elementType); SmallVector dynDims; for (int i = 0; i < lhsType.getRank(); i++) { if (lhsType.isDynamicDim(i)) { dynDims.push_back(rewriter.create(loc, lhs, i)); } } Value empty = rewriter.create( loc, resultShape, elementType, dynDims); Value output = rewriter.create( loc, cst0, empty).getResult(0); AffineExpr d0, d1, d2, d3, d4; bindDims(getContext(), d0, d1, d2, d3, d4); auto c0 = rewriter.getAffineConstantExpr(0); auto map = AffineMap::get(3, 0, {d0, d1, d2}, rewriter.getContext()); auto map1 = AffineMap::get(3, 0, {d0, d1, c0}, rewriter.getContext()); auto map2 = AffineMap::get(5, 0, {d0, d1, d3, d4}, rewriter.getContext()); auto map3 = AffineMap::get(5, 0, {d2, d3, d4}, rewriter.getContext()); auto map4 = AffineMap::get(5, 0, {d0, d1, d2}, rewriter.getContext()); SmallVector dqIndexingMaps = {map, map1, map1, map}; SmallVector matIndexingMaps = {map2, map3, map4}; SmallVector dequantIteratorTypes(3, utils::IteratorType::parallel); SmallVector matmulIteratorTypes = { utils::IteratorType::parallel, utils::IteratorType::parallel, utils::IteratorType::parallel, utils::IteratorType::reduction, utils::IteratorType::reduction }; Value rhsDequant = rewriter .create( loc, emptyDequant.getType(), ValueRange{rhsExpanded, scales, zps}, emptyDequant, /*indexingMaps=*/dqIndexingMaps, /*iteratorTypes=*/dequantIteratorTypes, [&](OpBuilder &b, Location loc, ValueRange args) { Value w = args[0], scale = args[1], zeroPoint = args[2]; Value extw = b.create(loc, rewriter.getI32Type(), w); Value fp_extw = b.create(loc, rewriter.getF16Type(), extw); Value shifted = b.create(loc, fp_extw, zeroPoint); Value dqw = b.create(loc, shifted, scale); b.create(loc, dqw); }) .getResult(0); Value matmulDequant = rewriter .create( loc, output.getType(), ValueRange{lhsExpanded, rhsDequant}, output, /*indexingMaps=*/matIndexingMaps, /*iteratorTypes=*/matmulIteratorTypes, [&](OpBuilder &b, Location loc, ValueRange args) { Value l = args[0], r = args[1], out = args[2]; Value pd = b.create(loc, l, r); Value ac = b.create(loc, pd, out); b.create(loc, ac); }) .getResult(0); rewriter.replaceOpWithNewOp(op, resultType, matmulDequant); return success(); } }; } // namespace namespace { class ConvertCustomQuantOpPass : public TorchConversion::ConvertCustomQuantOpBase { void getDependentDialects(DialectRegistry ®istry) const override { registry.insert(); registry.insert(); registry.insert(); registry.insert(); registry.insert(); TorchConversion::getBackendTypeConversionDependentDialects(registry); } void runOnOperation() override { MLIRContext *context = &getContext(); ConversionTarget target(*context); target.addLegalDialect(); TypeConverter typeConverter; typeConverter.addConversion([](Type type) { return type; }); TorchConversion::setupBackendTypeConversion(target, typeConverter); RewritePatternSet patterns(context); target.addIllegalOp(); patterns.add(typeConverter, context); if (failed( applyPartialConversion(getOperation(), target, std::move(patterns)))) signalPassFailure(); } }; } // namespace std::unique_ptr> mlir::torch::TorchConversion::createConvertCustomQuantOpPass() { return std::make_unique(); }