//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // Also available under a BSD-style license. See LICENSE. // //===----------------------------------------------------------------------===// #include "torch-mlir/Conversion/TorchToMhlo/TorchToMhlo.h" #include "../PassDetail.h" #include "./MhloLegalizeUtils.h" #include "./PopulatePatterns.h" #include "mlir-hlo/Dialect/mhlo/IR/chlo_ops.h" #include "mlir-hlo/Dialect/mhlo/IR/hlo_ops.h" #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "torch-mlir/Conversion/Utils/Utils.h" #include "torch-mlir/Dialect/Torch/IR/TorchDialect.h" #include "torch-mlir/Dialect/Torch/IR/TorchOps.h" #include "torch-mlir/Dialect/Torch/Utils/Utils.h" #include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h" using namespace mlir; using namespace mlir::torch; using namespace mlir::torch::Torch; namespace { Value getBroadcastTensor(PatternRewriter &rewriter, Operation *op, Value tensor, ArrayRef shape, ArrayRef dimSizes, ArrayRef broadcastDims) { auto tensorTy = tensor.getType().dyn_cast(); auto loc = op->getLoc(); Value mhloShape = rewriter.create(loc, dimSizes); RankedTensorType outTy = RankedTensorType::get(shape, tensorTy.getElementType()); RankedTensorType attrTy = RankedTensorType::get({static_cast(broadcastDims.size())}, rewriter.getIntegerType(64)); auto broadcastAttr = DenseIntElementsAttr::get(attrTy, broadcastDims); auto broadcast = rewriter.create( loc, outTy, tensor, mhloShape, broadcastAttr); return broadcast; } Value getPermutedTensor(PatternRewriter &rewriter, Operation *op, Value input, ArrayRef inpTransDims) { auto inputTy = input.getType().dyn_cast(); auto rank = inputTy.getRank(); auto transDims = mhlo::toPositiveDims(inpTransDims, rank); auto inpShape = inputTy.getShape(); std::vector newShape; newShape.reserve(rank); for (auto d : transDims) { newShape.push_back(inpShape[d]); } auto attrTy = RankedTensorType::get({static_cast(transDims.size())}, rewriter.getIntegerType(64)); auto permuteAttr = DenseIntElementsAttr::get(attrTy, transDims); auto outTy = RankedTensorType::get(newShape, inputTy.getElementType()); auto result = rewriter.create(op->getLoc(), outTy, input, permuteAttr); return result.getResult(); } void getBmmBroadcast(PatternRewriter &rewriter, Operation *op, Value &inpLhs, Value &inpRhs, int64_t leadingRank) { Value lhs = inpLhs; Value rhs = inpRhs; auto lhsRankTy = inpLhs.getType().dyn_cast(); auto rhsRankTy = inpRhs.getType().dyn_cast(); auto lhsRank = lhsRankTy.getRank(); auto rhsRank = rhsRankTy.getRank(); // The non-matrix (i.e. batch) dimensions are broadcasted (and thus must be // broadcastable). auto minRank = std::min(lhsRank, rhsRank); auto leadingDims = llvm::to_vector<4>(llvm::seq(0, leadingRank)); auto broadcastDims = llvm::to_vector<4>( llvm::seq(leadingRank, minRank + leadingRank)); auto lhsShape = lhsRankTy.getShape(); auto rhsShape = rhsRankTy.getShape(); if (lhsRank < rhsRank) { std::vector newShape(rhsShape.begin(), rhsShape.begin() + leadingRank); newShape.insert(newShape.end(), lhsShape.begin(), lhsShape.end()); auto newDimSizes = *mhlo::getDimSizesOfTensor(rewriter, op, rhs, leadingDims); auto lhsDimSizes = *mhlo::getDimSizesOfTensor(rewriter, op, lhs); newDimSizes.insert(newDimSizes.end(), lhsDimSizes.begin(), lhsDimSizes.end()); lhs = getBroadcastTensor(rewriter, op, lhs, newShape, newDimSizes, broadcastDims); } else { std::vector newShape(lhsShape.begin(), lhsShape.begin() + leadingRank); newShape.insert(newShape.end(), rhsShape.begin(), rhsShape.end()); auto newDimSizes = *mhlo::getDimSizesOfTensor(rewriter, op, lhs, leadingDims); auto rhsDimSizes = *mhlo::getDimSizesOfTensor(rewriter, op, rhs); newDimSizes.insert(newDimSizes.end(), rhsDimSizes.begin(), rhsDimSizes.end()); rhs = getBroadcastTensor(rewriter, op, rhs, newShape, newDimSizes, broadcastDims); } inpLhs = lhs; inpRhs = rhs; } // Perform the basic n-dim matmul operation encompassing the handling of // broadcasting and dynamic shape propagation. // All PyTorch ops that leverage matrix multiplication will derive this and // implement their specialized input processing (e.g transpose), and output // processing, e.g. GEMM or fully connected bias handling. template class ConvertAtenMatmulBaseOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; using OpAdaptor = typename AtenOpT::Adaptor; // Each variant must implement corresponding parameter parsing options. // Maintain separate input read functions for each variant because it is not // necessarily true with all variants that the first two operands are the lhs // and rhs. virtual LogicalResult readMatMulInputs(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, Value &lhs, Value &rhs) const { return rewriter.notifyMatchFailure( op, "unimplemented matrix multiplication variant input parsing function"); } LogicalResult performMatmul(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, Value &lhs, Value &rhs, Value &output) const { auto lhsTy = lhs.getType().cast(); auto rhsTy = rhs.getType().cast(); auto lhsRank = lhsTy.getRank(); auto rhsRank = rhsTy.getRank(); auto lhsElemTy = lhsTy.getElementType(); auto rhsElemTy = rhsTy.getElementType(); if (lhsElemTy != rhsElemTy) return op.emitError("matmul: input datatypes mismatched"); if (lhsRank < 1 || rhsRank < 1) { return op.emitError("matmul: inputs can't be 0-rank"); } if (lhsRank <= 2 && rhsRank <= 2) { output = rewriter.create(op->getLoc(), lhs, rhs, nullptr); return success(); } int64_t nBatchDims; if (rhsRank <= 2) { auto leadingRank = lhsRank - 2; getBmmBroadcast(rewriter, op, lhs, rhs, leadingRank); nBatchDims = leadingRank; } else if (lhsRank <= 2) { auto leadingRank = rhsRank - 2; getBmmBroadcast(rewriter, op, lhs, rhs, leadingRank); nBatchDims = leadingRank; } else { assert(rhsRank > 2 && lhsRank > 2); auto leadingRank = std::max(lhsRank - rhsRank, rhsRank - lhsRank); nBatchDims = std::max(lhsRank - 2, rhsRank - 2); getBmmBroadcast(rewriter, op, lhs, rhs, leadingRank); } auto batchDims = llvm::to_vector<4>(llvm::seq(0, nBatchDims)); auto lhsContractingDim = nBatchDims + 1; auto rhsContractingDim = nBatchDims; if (lhsRank == 1) lhsContractingDim = nBatchDims; mhlo::DotDimensionNumbersAttr dotDimensionNumbers = mhlo::DotDimensionNumbersAttr::get( rewriter.getContext(), /*lhsBatchingDimensions=*/batchDims, /*rhsBatchingDimensions=*/batchDims, /*lhsContractingDimensions=*/{lhsContractingDim}, /*rhsContractingDimensions=*/{rhsContractingDim}); auto resultTy = OpConversionPattern::getTypeConverter() ->convertType(op.getType()) .template cast(); output = rewriter .create(op->getLoc(), resultTy, lhs, rhs, dotDimensionNumbers, nullptr) .getResult(); return success(); } // The default version just reads two inputs, computes output and returns it. // Other versions may add a bias, apply GEMM-style alpha/beta scaling etc. virtual LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Value lhs, rhs; if (failed(readMatMulInputs(op, adaptor, rewriter, lhs, rhs))) return op.emitError("failed to read matmul inputs"); Value output; if (failed(performMatmul(op, adaptor, rewriter, lhs, rhs, output))) return op.emitError("failed to perform matmul operation"); rewriter.replaceOpWithNewOp( op, OpConversionPattern::getTypeConverter() ->convertType(op.getType()) .template cast(), output); return success(); } }; // Legalizes the torch.matmul op for general n-dim matmul. template class ConvertAtenMatMulOp : public ConvertAtenMatmulBaseOp { public: using ConvertAtenMatmulBaseOp::ConvertAtenMatmulBaseOp; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult readMatMulInputs(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, Value &lhs, Value &rhs) const override { lhs = adaptor.self(); auto lhsTy = lhs.getType().cast(); rhs = adaptor.other(); auto rhsTy = rhs.getType().cast(); if (!lhsTy || !rhsTy) return op.emitError( "only ranked tensor types are supported in MHLO matmul"); return success(); } }; // Implements handling of aten.mm and aten.bmm ops. template class ConvertAtenMmOp : public ConvertAtenMatmulBaseOp { public: using ConvertAtenMatmulBaseOp::ConvertAtenMatmulBaseOp; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult readMatMulInputs(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, Value &lhs, Value &rhs) const override { lhs = adaptor.self(); auto lhsTy = lhs.getType().cast(); rhs = adaptor.mat2(); auto rhsTy = rhs.getType().cast(); if (!lhsTy || !rhsTy) return op.emitError( "only ranked tensor types are supported in MHLO matmul"); auto lhsRank = lhsTy.getRank(); auto rhsRank = rhsTy.getRank(); if (isa(op)) { // Mm takes two 2D tensors. if (lhsRank != 2 || rhsRank != 2) return op.emitError("aten.mm called but matrix rank != 2"); } else if (isa(op)) { // Bmm takes two 3D tensors. if (lhsRank != 3 || rhsRank != 3) return op.emitError("aten.bmm called but matrix rank != 3"); } return success(); } }; // Implements handling of aten.linear op. template class ConvertAtenLinearOp : public ConvertAtenMatmulBaseOp { public: using ConvertAtenMatmulBaseOp::ConvertAtenMatmulBaseOp; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult readMatMulInputs(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, Value &lhs, Value &rhs) const override { lhs = adaptor.input(); auto lhsTy = lhs.getType().cast(); rhs = adaptor.weight(); auto rhsTy = rhs.getType().cast(); if (!lhsTy || !rhsTy) return op.emitError( "only ranked tensor types are supported in MHLO matmul"); auto lhsRank = lhsTy.getRank(); auto rhsRank = rhsTy.getRank(); if (lhsRank != 2 && lhsRank != 3) return op.emitError("aten.Linear called but input rank not 2 or 3"); if (rhsRank != 2 && rhsRank != 3) return op.emitError("aten.Linear called but weight rank not 2 or 3"); return success(); } // Override the default rewriter to perform RHS transpose and bias addition // as well. LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Value lhs, rhs; if (failed(readMatMulInputs(op, adaptor, rewriter, lhs, rhs))) return op.emitError("failed to read matmul inputs"); // The aten.Linear op has a bias tensor that is added to the matmul // output. auto bias = adaptor.bias(); auto biasTy = bias.getType(); // MHLO does not mandate that elementwise op tensors need to be ranked. if (!biasTy.template isa() && !biasTy.template isa()) return op.emitError("only ranked tensor types are supported in MHLO " "matmul for bias tensor"); // weight.T rhs = getPermutedTensor(rewriter, op, rhs, {1, 0}); auto lhsTy = lhs.getType().cast(); auto rhsTy = rhs.getType().cast(); auto leadingRank = std::max(lhsTy.getRank() - rhsTy.getRank(), rhsTy.getRank() - lhsTy.getRank()); getBmmBroadcast(rewriter, op, lhs, rhs, leadingRank); auto resultRank = std::max(lhsTy.getRank(), rhsTy.getRank()); auto nBatchDims = resultRank - 2; auto batchDims = llvm::to_vector<4>(llvm::seq(0, nBatchDims)); auto lhsContractingDim = nBatchDims + 1; auto rhsContractingDim = nBatchDims; mhlo::DotDimensionNumbersAttr dotDimensionNumbers = mhlo::DotDimensionNumbersAttr::get( rewriter.getContext(), /*lhsBatchingDimensions=*/batchDims, /*rhsBatchingDimensions=*/batchDims, /*lhsContractingDimensions=*/{lhsContractingDim}, /*rhsContractingDimensions=*/{rhsContractingDim}); auto resultTy = OpConversionPattern::getTypeConverter()->convertType( op.getType()); Value matmulOutput = rewriter.create( op->getLoc(), resultTy, lhs, rhs, dotDimensionNumbers, nullptr); Value matmulPlusBias = matmulOutput; if (!biasTy.template isa()) { // Bias addition broadcasts to the matmul output shape. matmulPlusBias = rewriter .create(op->getLoc(), resultTy, matmulOutput, bias, nullptr) .getResult(); } rewriter.replaceOpWithNewOp(op, resultTy, matmulPlusBias); return success(); } }; } // namespace namespace { class ConvertAtenConvolutionOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; using OpAdaptor = typename AtenConvolutionOp::Adaptor; Value reshapeConvWeight(PatternRewriter &rewriter, Operation *op, Value weight, int64_t groups) const { auto weightTy = weight.getType().cast(); auto weightElemTy = weightTy.getElementType(); auto rank = weightTy.getRank(); SmallVector weightShapeVec = *mhlo::getDimSizesOfTensor(rewriter, op, weight); auto weightShape = weightTy.getShape(); SmallVector weightShapeInt(rank); std::copy(weightShape.begin(), weightShape.end(), weightShapeInt.begin()); // 1. [IC, OC, H, W, ...] => [G, IC//G, OC, H, W, ...] Value GValue = rewriter.create( op->getLoc(), rewriter.getI64IntegerAttr(groups)); Value ICDivGValue = rewriter.create( op->getLoc(), weightShapeVec[0], GValue); Value OCMulGValue = rewriter.create( op->getLoc(), weightShapeVec[1], GValue); weightShapeVec[0] = ICDivGValue; weightShapeVec.insert(weightShapeVec.begin(), GValue); if (weightShapeInt[0] == ShapedType::kDynamicSize) { weightShapeInt.insert(weightShapeInt.begin(), groups); } else { weightShapeInt[0] /= groups; weightShapeInt.insert(weightShapeInt.begin(), groups); } Value weightShapeTensor = rewriter.create( op->getLoc(), weightShapeVec); weight = rewriter.create( op->getLoc(), RankedTensorType::get(weightShapeInt, weightElemTy), weight, weightShapeTensor); // 2. [G, IC//G, OC, H, W, ...] => [IC//G, G, OC, H, W, ...] std::vector transposeDims(rank + 1); for (int64_t i = 0; i <= rank; i++) transposeDims[i] = i; std::swap(transposeDims[1], transposeDims[0]); weight = rewriter.create( op->getLoc(), weight, rewriter.getI64TensorAttr(transposeDims)); // 3. [IC//G, G, OC, H, W, ...] => [IC//G, G*OC, H, W, ...] weightShapeInt.erase(weightShapeInt.begin()); if (weightShapeInt[1] != ShapedType::kDynamicSize) { weightShapeInt[1] *= groups; } weightShapeVec.erase(weightShapeVec.begin()); weightShapeVec[1] = OCMulGValue; weightShapeTensor = rewriter.create( op->getLoc(), weightShapeVec); weight = rewriter.create( op->getLoc(), RankedTensorType::get(weightShapeInt, weightElemTy), weight, weightShapeTensor); return weight; } Value convertTransposedConv(AtenConvolutionOp op, ConversionPatternRewriter &rewriter, RankedTensorType outType, Value input, Value weight, ArrayRef stride, ArrayRef padding, ArrayRef dilation, ArrayRef outputPadding, int64_t groups, bool needHandleOutputPadding) const { auto inputTy = input.getType().cast(); auto weightTy = weight.getType().cast(); auto weightShape = weightTy.getShape(); auto nDims = inputTy.getRank(); auto nSpatialDims = nDims - 2; auto convOutTy = outType; if (needHandleOutputPadding) { SmallVector outShape(nDims); auto finalOutShape = outType.getShape(); std::copy(finalOutShape.begin(), finalOutShape.end(), outShape.begin()); for (int i = 2; i < nDims; ++i) { if (finalOutShape[i] == ShapedType::kDynamicSize) continue; outShape[i] = finalOutShape[i] - outputPadding[i - 2]; } convOutTy = RankedTensorType::get(outShape, outType.getElementType()); } // Prepare for transposed convolution SmallVector mhloStrideVec(nSpatialDims, 1); DenseIntElementsAttr mhloStride = rewriter.getI64TensorAttr(mhloStrideVec); SmallVector mhloPaddingVec(nSpatialDims * 2, 0); for (int i = 0; i < nSpatialDims; ++i) { int64_t padInt = dilation[i] * (weightShape[i + 2] - 1) - padding[i]; mhloPaddingVec[i * 2] = padInt; mhloPaddingVec[i * 2 + 1] = padInt; } DenseIntElementsAttr mhloPadding = DenseIntElementsAttr::get( RankedTensorType::get({nSpatialDims, 2}, rewriter.getI64Type()), mhloPaddingVec); SmallVector mhloLhsDilationVec(nSpatialDims); std::copy(stride.begin(), stride.end(), mhloLhsDilationVec.begin()); DenseIntElementsAttr mhloLhsDilation = rewriter.getI64TensorAttr(mhloLhsDilationVec); SmallVector mhloRhsDilationVec(nSpatialDims); std::copy(dilation.begin(), dilation.end(), mhloRhsDilationVec.begin()); DenseIntElementsAttr mhloRhsDilation = rewriter.getI64TensorAttr(mhloRhsDilationVec); DenseElementsAttr windowReversal; ArrayAttr precisionConfig; SmallVector spatialDims; for (int i = 0; i < nSpatialDims; ++i) { spatialDims.push_back(i + 2); } mhlo::ConvDimensionNumbersAttr dimensionNumbers = mhlo::ConvDimensionNumbersAttr::get( /*context=*/rewriter.getContext(), /*inputBatchDimension=*/0, /*inputFeatureDimension=*/1, /*inputSpatialDimensions=*/spatialDims, /*kernelInputFeatureDimension=*/0, /*kernelOutputFeatureDimension=*/1, /*kernelSpatialDimensions=*/spatialDims, /*outputBatchDimension=*/0, /*outputFeatureDimension=*/1, /*outputSpatialDimensions=*/spatialDims); // Reverse and transpose weight weight = rewriter.create( op->getLoc(), weight, rewriter.getI64TensorAttr(spatialDims)); if (groups != 1) { weight = reshapeConvWeight(rewriter, op, weight, groups); } // Create transposed convolution auto transposedConvOp = rewriter.create( op->getLoc(), convOutTy, input, weight, mhloStride, mhloPadding, mhloLhsDilation, mhloRhsDilation, windowReversal, dimensionNumbers, static_cast(groups), 1, precisionConfig); // Handle output padding if (!needHandleOutputPadding) { return transposedConvOp.getResult(); } SmallVector edgePaddingLowVec(nDims, 0); SmallVector edgePaddingHighVec(nDims, 0); SmallVector interiorPaddingVec(nDims, 0); std::copy(outputPadding.begin(), outputPadding.end(), edgePaddingHighVec.begin() + 2); Value paddingValue = mhlo::getConstTensor(rewriter, op, {0.0}, {}).getValue(); paddingValue = mhlo::promoteType(rewriter, paddingValue, inputTy); mlir::DenseIntElementsAttr edgePaddingLow = rewriter.getI64VectorAttr(edgePaddingLowVec); mlir::DenseIntElementsAttr edgePaddingHigh = rewriter.getI64VectorAttr(edgePaddingHighVec); mlir::DenseIntElementsAttr interiorPadding = rewriter.getI64VectorAttr(interiorPaddingVec); auto paddedOutput = rewriter.create( op->getLoc(), outType, transposedConvOp, paddingValue, edgePaddingLow, edgePaddingHigh, interiorPadding); return paddedOutput.getResult(); } Value convertNormalConv(AtenConvolutionOp op, ConversionPatternRewriter &rewriter, RankedTensorType outType, Value input, Value weight, ArrayRef stride, ArrayRef padding, ArrayRef dilation, int64_t groups) const { int64_t nDims = outType.getRank(); // Get mhlo::ConvolutionOp attributes DenseIntElementsAttr mhloWindowStride = DenseIntElementsAttr::get( RankedTensorType::get({static_cast(stride.size())}, rewriter.getI64Type()), stride); std::vector mhloPaddingVec; for (size_t i = 0; i < padding.size(); i++) { mhloPaddingVec.emplace_back(padding[i]); mhloPaddingVec.emplace_back(padding[i]); } DenseIntElementsAttr mhloPadding = DenseIntElementsAttr::get( RankedTensorType::get( {static_cast(padding.size()), static_cast(2)}, rewriter.getI64Type()), mhloPaddingVec); DenseIntElementsAttr mhloRhsDilation = DenseIntElementsAttr::get( RankedTensorType::get({static_cast(dilation.size())}, rewriter.getI64Type()), dilation); SmallVector spatialDimensions; for (int64_t i = 2; i < nDims; i++) { spatialDimensions.emplace_back(i); } mhlo::ConvDimensionNumbersAttr dimensionNumbers = mhlo::ConvDimensionNumbersAttr::get( /*context=*/rewriter.getContext(), /*inputBatchDimension=*/0, /*inputFeatureDimension=*/1, /*inputSpatialDimensions=*/spatialDimensions, /*kernelInputFeatureDimension=*/1, /*kernelOutputFeatureDimension=*/0, /*kernelSpatialDimensions=*/spatialDimensions, /*outputBatchDimension=*/0, /*outputFeatureDimension=*/1, /*outputSpatialDimensions=*/spatialDimensions); // mhlo::ConvolutionOp's optional attributes, leave them as default DenseIntElementsAttr mhloLhsDilation; DenseElementsAttr windowReversal; ArrayAttr precisionConfig; auto mhloConvOp = rewriter.create( op->getLoc(), outType, input, weight, mhloWindowStride, mhloPadding, mhloLhsDilation, mhloRhsDilation, windowReversal, dimensionNumbers, static_cast(groups), 1, precisionConfig); return mhloConvOp.getResult(); } LogicalResult matchAndRewrite(AtenConvolutionOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Value input = adaptor.input(); Value weight = adaptor.weight(); // The input shape is [N, C, H, W] auto inputTy = input.getType().template cast(); // The weight shape is [OC, (IC//G), KH, KW] // If transposed is set to true, // the weight shape changes to [IC, (OC//G), KH, KW] auto weightTy = weight.getType().template cast(); auto outTy = getTypeConverter() ->convertType(op.getType()) .template cast(); if (!inputTy || !weightTy || !outTy) { return op.emitError("input, weight and output must be ranked tensors"); } if (inputTy.getRank() < 3) return op.emitError("only input with at least 3 dims valid"); SmallVector stride; if (!matchPattern(op.stride(), m_TorchConstantIntList(stride))) { return rewriter.notifyMatchFailure(op, "non-const stride list unsupported"); } SmallVector padding; if (!matchPattern(op.padding(), m_TorchConstantIntList(padding))) { return rewriter.notifyMatchFailure(op, "non-const padding list unsupported"); } SmallVector dilation; if (!matchPattern(op.dilation(), m_TorchConstantIntList(dilation))) { return rewriter.notifyMatchFailure(op, "non-const dilation list unsupported"); } SmallVector outputPadding; if (!matchPattern(op.output_padding(), m_TorchConstantIntList(outputPadding))) { return rewriter.notifyMatchFailure( op, "non-const output_padding list unsupported"); } int64_t groups; if (!matchPattern(op.groups(), m_TorchConstantInt(&groups))) { return rewriter.notifyMatchFailure(op, "non-int groups unsupported"); } bool transposed; if (!matchPattern(op.transposed(), m_TorchConstantBool(&transposed))) { return rewriter.notifyMatchFailure(op, "non-bool transposed unsupported"); } // Whether need to handle outputpadding bool needHandleOutputPadding = false; for (int64_t i : outputPadding) { if (i != 0) { needHandleOutputPadding = true; break; } } // Op validation check if (needHandleOutputPadding && !transposed) { return op->emitError( "output padding attr is valid only in transposed convolution"); } assert(padding.size() == dilation.size() && padding.size() == stride.size() && padding.size() == static_cast(inputTy.getRank()) - 2 && inputTy.getRank() == weightTy.getRank()); auto nSpatialDims = padding.size(); auto nDims = inputTy.getRank(); // Kernel size must be constant. auto weightShape = weightTy.getShape(); for (int i = 2; i < nDims; ++i) { if (weightShape[i] == ShapedType::kDynamicSize) { return rewriter.notifyMatchFailure( op, "only constant kernel size is supported"); } } Value mhloConvResult; if (transposed) { mhloConvResult = convertTransposedConv( op, rewriter, outTy, input, weight, stride, padding, dilation, outputPadding, groups, needHandleOutputPadding); } else { mhloConvResult = convertNormalConv(op, rewriter, outTy, input, weight, stride, padding, dilation, groups); } auto bias = adaptor.bias(); // No bias provided if (failed(checkNotNone(rewriter, op, op.bias()))) { rewriter.replaceOp(op, mhloConvResult); return success(); } // Handle bias if (!bias.getType().cast()) { return op.emitError("bias provided but not a ranked tensor"); } auto biasTy = bias.getType().template cast(); if (!biasTy.getElementType().isIntOrFloat()) { return op.emitError("only floating-point or integer datatype " "legalization for bias supported"); } assert(biasTy.getRank() <= 1); // Reshape and promote bias auto inputUnsqzDims = llvm::to_vector<4>(llvm::seq(-nSpatialDims, 0)); bias = *mhlo::unsqueezeTensor(rewriter, op, bias, inputUnsqzDims); bias = mhlo::promoteType(rewriter, bias, outTy); DenseIntElementsAttr bcastDimensions; rewriter.replaceOpWithNewOp(op, outTy, mhloConvResult, bias, bcastDimensions); return success(); } }; } // namespace void mlir::torch::torch_to_mhlo::populateLinearOpPatternsAndLegality( TypeConverter &typeConverter, RewritePatternSet &patterns, ConversionTarget &target) { MLIRContext *context = patterns.getContext(); #define INSERT_MATMUL_ATENOP_PATTERN(AtenOp) \ target.addIllegalOp(); \ patterns.add>(typeConverter, context); INSERT_MATMUL_ATENOP_PATTERN(AtenMatmulOp); #undef INSERT_MATMUL_ATEMOP_PATTERN #define INSERT_MM_ATENOP_PATTERN(AtenOp) \ target.addIllegalOp(); \ patterns.add>(typeConverter, context); INSERT_MM_ATENOP_PATTERN(AtenMmOp); INSERT_MM_ATENOP_PATTERN(AtenBmmOp); #undef INSERT_MM_ATEMOP_PATTERN #define INSERT_LINEAR_ATENOP_PATTERN(AtenOp) \ target.addIllegalOp(); \ patterns.add>(typeConverter, context); INSERT_LINEAR_ATENOP_PATTERN(AtenLinearOp); #undef INSERT_LINEAR_ATEMOP_PATTERN #define INSERT_CONVOLUTION_ATENOP_PATTERN(AtenOp) \ target.addIllegalOp(); \ patterns.add(typeConverter, context); INSERT_CONVOLUTION_ATENOP_PATTERN(AtenConvolutionOp); #undef INSERT_CONVOLUTION_ATENOP_PATTERN }