# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # Also available under a BSD-style license. See LICENSE. import torch from torch_mlir_e2e_test.torchscript.framework import TestUtils from torch_mlir_e2e_test.torchscript.registry import register_test_case from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export # TODO: Support scalar !torch.int/!torch.float variants. Add support to # ReduceOpVariants to implement them in terms of the tensor-only variants + # torch.prim.NumToTensor. # TODO: This is pretty verbose. Can we have a helper to reduce # the boilerplate? # ============================================================================== class ElementwiseUnaryModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, a): return torch.tanh(a) @register_test_case(module_factory=lambda: ElementwiseUnaryModule()) def ElementwiseUnaryModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) # ============================================================================== class ElementwiseBinaryModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1], torch.float32, True), ]) def forward(self, a, b): return a * b @register_test_case(module_factory=lambda: ElementwiseBinaryModule()) def ElementwiseBinaryModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4), tu.rand(4)) # ============================================================================== class ElementwiseBinaryStaticShapeModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([5, 4, 3, 3, 1], torch.float32, True), ([4, 3, 1, 2], torch.float32, True), ]) def forward(self, a, b): return a * b @register_test_case( module_factory=lambda: ElementwiseBinaryStaticShapeModule()) def ElementwiseBinaryStaticShapeModule_basic(module, tu: TestUtils): module.forward(tu.rand(5, 4, 3, 3, 1), tu.rand(4, 3, 1, 2)) # ============================================================================== class ElementwiseTernaryModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ([-1], torch.float32, True), ]) def forward(self, a, b, c): return torch.lerp(a, b, c) @register_test_case(module_factory=lambda: ElementwiseTernaryModule()) def ElementwiseTernaryModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 5), tu.rand(4, 5), tu.rand(5)) # ============================================================================== class ElementwiseWhereSelfModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ([-1], torch.float32, True), ]) def forward(self, a, b, c): return torch.where(a > 0.5, b, c) @register_test_case(module_factory=lambda: ElementwiseWhereSelfModule()) def ElementwiseWhereSelfModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 5), tu.rand(4, 5), tu.rand(5)) # ============================================================================== # Addition is an interesting special case of a binary op, because under the hood # it carries a third scalar "alpha" parameter, which needs special handling. class ElementwiseAddModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1], torch.float32, True), ([], torch.float32, True), ]) def forward(self, a, b): return a + b @register_test_case(module_factory=lambda: ElementwiseAddModule()) def ElementwiseAddModule_basic(module, tu: TestUtils): module.forward(tu.rand(4), tu.rand()) # ============================================================================== class ElementwiseUnsqueezeBroadcastModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1], torch.float32, True), ([], torch.float32, True), ]) def forward(self, a, b): return a * b.unsqueeze(0) @register_test_case( module_factory=lambda: ElementwiseUnsqueezeBroadcastModule()) def ElementwiseUnsqueezeBroadcastModule_basic(module, tu: TestUtils): module.forward(tu.rand(4), tu.rand()) # ============================================================================== class ElementwiseUnsqueezeNegDimsModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, a): # As mentioned in `unsqueeze` docstring, # valid dim values are [-input.dim()-1, input.dim()+1). # This tests the lower bound return torch.unsqueeze(a, -3) @register_test_case(module_factory=lambda: ElementwiseUnsqueezeNegDimsModule()) def ElementwiseUnsqueezeNegDimsModule_basic(module, tu: TestUtils): module.forward(tu.rand(4, 3)) # ============================================================================== class ElementwiseFlattenBroadcastModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1], torch.float32, True), ([], torch.float32, True), ]) def forward(self, a, b): return a * b.flatten(-1, -1) @register_test_case(module_factory=lambda: ElementwiseFlattenBroadcastModule()) def ElementwiseFlattenBroadcastModule_basic(module, tu: TestUtils): module.forward(tu.rand(6), tu.rand()) # ============================================================================== class ElementwiseReluModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.relu(x) @register_test_case(module_factory=lambda: ElementwiseReluModule()) def ElementwiseReluModule_basic(module, tu: TestUtils): module.forward(tu.rand(4, 2) - 0.5) # ============================================================================== class ElementwiseLeakyReluModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.ops.aten.leaky_relu(x, negative_slope=0.1) @register_test_case(module_factory=lambda: ElementwiseLeakyReluModule()) def ElementwiseLeakyReluModule_basic(module, tu: TestUtils): module.forward(tu.rand(4, 2) - 0.5) # ============================================================================== class ElementwiseGeluModule(torch.nn.Module): def __init__(self): super().__init__() self.gelu = torch.nn.GELU() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return self.gelu(x) @register_test_case(module_factory=lambda: ElementwiseGeluModule()) def ElementwiseGeluModule_basic(module, tu: TestUtils): module.forward(2 * tu.rand(5, 3) - 0.5) # ============================================================================== class ElementwiseSigmoidModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.sigmoid(x) @register_test_case(module_factory=lambda: ElementwiseSigmoidModule()) def ElementwiseSigmoidModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 5)) # ============================================================================== class ElementwiseMinimumModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ]) def forward(self, x, y): return torch.minimum(x, y) @register_test_case(module_factory=lambda: ElementwiseMinimumModule()) def ElementwiseMinimumModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 5), tu.rand(3, 5)) module.forward(tu.nans(3, 5), tu.rand(3, 5)) # ============================================================================== class ElementwiseMaximumModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ]) def forward(self, x, y): return torch.maximum(x, y) @register_test_case(module_factory=lambda: ElementwiseMaximumModule()) def ElementwiseMaximumModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 5), tu.rand(3, 5)) module.forward(tu.nans(3, 5), tu.rand(3, 5)) # ============================================================================== class ElementwiseGtFloatScalarModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.gt(x, 0.6) @register_test_case(module_factory=lambda: ElementwiseGtFloatScalarModule()) def ElementwiseGtFloatScalarModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 5)) class ElementwiseGtIntScalarModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.int64, True), ]) def forward(self, x): return torch.gt(x, 10) @register_test_case(module_factory=lambda: ElementwiseGtIntScalarModule()) def ElementwiseGtIntScalarModule_basic(module, tu: TestUtils): module.forward(torch.randint(-10, 15, (3, 4))) class ElementwiseGtMixed2ScalarModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.int32, True), ]) def forward(self, x): return torch.gt(x, 7) @register_test_case(module_factory=lambda: ElementwiseGtMixed2ScalarModule()) def ElementwiseGtMixed2ScalarModule_basic(module, tu: TestUtils): module.forward(torch.randint(-10, 15, (3, 4)).to(torch.int32)) class ElementwiseGtFloatTensorModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1], torch.float32, True), ]) def forward(self, x, y): return torch.gt(x, y) @register_test_case(module_factory=lambda: ElementwiseGtFloatTensorModule()) def ElementwiseGtFloatTensorModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 5), tu.rand(5)) class ElementwiseGtIntTensorModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.int64, True), ([-1], torch.int64, True), ]) def forward(self, x, y): return torch.gt(x, y) @register_test_case(module_factory=lambda: ElementwiseGtIntTensorModule()) def ElementwiseGtIntTensorModule_basic(module, tu: TestUtils): module.forward(torch.randint(10, (3, 5)), torch.randint(10, (5, ))) # ============================================================================== class ElementwiseLtFloatScalarModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.lt(x, 0.6) @register_test_case(module_factory=lambda: ElementwiseLtFloatScalarModule()) def ElementwiseLtFloatScalarModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 5)) class ElementwiseLtIntScalarModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.int64, True), ]) def forward(self, x): return torch.lt(x, 0) @register_test_case(module_factory=lambda: ElementwiseLtIntScalarModule()) def ElementwiseLtIntScalarModule_basic(module, tu: TestUtils): module.forward(torch.randint(-10, 15, (3, 4))) class ElementwiseLtDiffWidthScalarModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.int32, True), ]) def forward(self, x): return torch.lt(x, 2) @register_test_case( module_factory=lambda: ElementwiseLtDiffWidthScalarModule()) def ElementwiseLtDiffWidthScalarModule_basic(module, tu: TestUtils): module.forward(torch.randint(-10, 15, (3, 4)).to(torch.int32)) class ElementwiseLtFloatTensorModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1], torch.float32, True), ]) def forward(self, x, y): return torch.lt(x, y) @register_test_case(module_factory=lambda: ElementwiseLtFloatTensorModule()) def ElementwiseLtFloatTensorModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 5), tu.rand(5)) class ElementwiseLtIntTensorModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.int64, True), ([-1], torch.int64, True), ]) def forward(self, x, y): return torch.lt(x, y) @register_test_case(module_factory=lambda: ElementwiseLtIntTensorModule()) def ElementwiseLtIntTensorModule_basic(module, tu: TestUtils): module.forward(torch.randint(10, (3, 5)), torch.randint(10, (5, ))) # ============================================================================== class ElementwiseEqFloatScalarModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.eq(x, 6.0) @register_test_case(module_factory=lambda: ElementwiseEqFloatScalarModule()) def ElementwiseEqFloatScalarModule_basic(module, tu: TestUtils): module.forward( torch.tensor([[1.0, 2.2, 6.0], [6.0, 2.0, 3.1]]).to(torch.float32)) class ElementwiseEqIntScalarModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.int64, True), ]) def forward(self, x): return torch.eq(x, 2) @register_test_case(module_factory=lambda: ElementwiseEqIntScalarModule()) def ElementwiseEqIntScalarModule_basic(module, tu: TestUtils): module.forward(torch.randint(2, 4, (5, 8))) class ElementwiseEqDiffWidthScalarModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.int32, True), ]) def forward(self, x): return torch.eq(x, 2) @register_test_case( module_factory=lambda: ElementwiseEqDiffWidthScalarModule()) def ElementwiseEqDiffWidthScalarModule_basic(module, tu: TestUtils): module.forward(torch.randint(2, 4, (5, 8)).to(torch.int32)) class ElementwiseEqFloatTensorModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1], torch.float32, True), ]) def forward(self, x, y): return torch.eq(x, y) @register_test_case(module_factory=lambda: ElementwiseEqFloatTensorModule()) def ElementwiseEqFloatTensorModule_basic(module, tu: TestUtils): module.forward( torch.tensor([[1.0, 2.2, 6.0], [6.0, 2.0, 3.1]]).to(torch.float32), torch.tensor([1.0, 2.4, 6.0]).to(torch.float32)) class ElementwiseEqIntTensorModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.int64, True), ([-1], torch.int64, True), ]) def forward(self, x, y): return torch.eq(x, y) @register_test_case(module_factory=lambda: ElementwiseEqIntTensorModule()) def ElementwiseEqIntTensorModule_basic(module, tu: TestUtils): module.forward(torch.randint(2, 4, (8, 5)), torch.randint(2, 4, (5, ))) # ============================================================================== class ElementwiseClampModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): # TODO: It would be great to return all of these, so they get checked # individually, but RefBackend doesn't support multiple returns. # Instead, multiply them together, which has some chance of propagating # all the values. float_min = torch.clamp(x, min=-2.0) int_min = torch.clamp(x, min=-3) float_max = torch.clamp(x, max=2.0) int_max = torch.clamp(x, max=3) both = torch.clamp(x, min=-5, max=5) return float_min * int_min * float_max * int_max * both @register_test_case(module_factory=lambda: ElementwiseClampModule()) def ElementwiseClampModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 5, low=-10, high=10)) # ============================================================================== class RsubModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.rsub(x, 3.0, alpha=1.0) @register_test_case(module_factory=lambda: RsubModule()) def RsubModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) class RsubModule_noalpha(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.rsub(x, 2.0) @register_test_case(module_factory=lambda: RsubModule_noalpha()) def RsubModule_noalpha_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) # ============================================================================== class ElementwiseMulScalarIntModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.int64, True), ]) def forward(self, x): return torch.mul(x, 4) @register_test_case(module_factory=lambda: ElementwiseMulScalarIntModule()) def ElementwiseMulScalarModule_int(module, tu: TestUtils): module.forward(torch.randint(10, (3, 4))) class ElementwiseMulScalarFloatModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.mul(x, 100.0) @register_test_case(module_factory=lambda: ElementwiseMulScalarFloatModule()) def ElementwiseMulScalarModule_float(module, tu: TestUtils): module.forward(tu.rand(3, 4)) class ElementwiseMulScalarModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.int64, True), ]) def forward(self, x): return torch.mul(x, 8.0) @register_test_case(module_factory=lambda: ElementwiseMulScalarModule()) def ElementwiseMulScalarModule_basic(module, tu: TestUtils): module.forward(torch.randint(10, (3, 4))) class ElementwiseMulTensorFloatModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1], torch.float32, True), ([-1], torch.float64, True), ]) def forward(self, a, b): return torch.mul(a, b) @register_test_case(module_factory=lambda: ElementwiseMulTensorFloatModule()) def ElementwiseMulTensorFloatModule_basic(module, tu: TestUtils): module.forward(tu.rand(4), tu.rand(4).type(torch.float64)) class ElementwiseMulTensorIntModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1], torch.int32, True), ([-1], torch.int64, True), ]) def forward(self, a, b): return torch.mul(a, b) @register_test_case(module_factory=lambda: ElementwiseMulTensorIntModule()) def ElementwiseMulTensorIntModule_basic(module, tu: TestUtils): module.forward( torch.randint(10, [4]).type(torch.int32), torch.randint(10, [4])) # ============================================================================== class ElementwiseLogModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, a): return torch.log(a) @register_test_case(module_factory=lambda: ElementwiseLogModule()) def ElementwiseLogModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) class ElementwiseSqrtModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, a): return torch.sqrt(a) @register_test_case(module_factory=lambda: ElementwiseSqrtModule()) def ElementwiseSqrtModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) class ElementwiseFloorModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, a): return torch.floor(a) @register_test_case(module_factory=lambda: ElementwiseFloorModule()) def ElementwiseFloorModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) class ElementwiseCeilModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, a): return torch.ceil(a) @register_test_case(module_factory=lambda: ElementwiseCeilModule()) def ElementwiseCeilModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) class ElementwisePowModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, a): return torch.pow(a, 2.0) @register_test_case(module_factory=lambda: ElementwisePowModule()) def ElementwisePowModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) # ============================================================================== class ElementwiseToDtypeF32ToI64Module(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True) ]) def forward(self, x): return x.to(torch.int64) @register_test_case(module_factory=lambda: ElementwiseToDtypeF32ToI64Module()) def ElementwiseToDtypeF32ToI64Module_basic(module, tu: TestUtils): module.forward(tu.rand(3, 5)) class ElementwiseToDtypeIdentityModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True) ]) def forward(self, x): return x.to(torch.float32, False, False) @register_test_case(module_factory=lambda: ElementwiseToDtypeIdentityModule()) def ElementwiseToDtypeIdentityModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 5)) class ElementwiseLog2Module(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, a): return torch.log2(a) @register_test_case(module_factory=lambda: ElementwiseLog2Module()) def ElementwiseLog2Module_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) class ElementwiseRsqrtModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, a): return torch.rsqrt(a) @register_test_case(module_factory=lambda: ElementwiseRsqrtModule()) def ElementwiseRsqrtModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) # ============================================================================== class ElementwiseAbsModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, a): return torch.abs(a) @register_test_case(module_factory=lambda: ElementwiseAbsModule()) def ElementwiseAbsModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 5, low=-1.0, high=1.0)) # ============================================================================== class ElementwiseReciprocalModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1], torch.float32, True), ]) def forward(self, a): return torch.reciprocal(a) @register_test_case(module_factory=lambda: ElementwiseReciprocalModule()) def ElementwiseReciprocalModule_basic(module, tu: TestUtils): module.forward(tu.rand(4)) # ============================================================================== class ElementwiseDivScalarModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.div(x, 10.0) @register_test_case(module_factory=lambda: ElementwiseDivScalarModule()) def ElementwiseDivScalarModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) class ElementwiseDivTensorFloatModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1], torch.float32, True), ([-1], torch.float64, True), ]) def forward(self, a, b): return torch.div(a, b) @register_test_case(module_factory=lambda: ElementwiseDivTensorFloatModule()) def ElementwiseDivTensorFloatModule_basic(module, tu: TestUtils): module.forward(tu.rand(4), tu.rand(4).type(torch.float64)) # ============================================================================== class ElementwiseAndIntegerModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.int32, True), ([-1, -1], torch.int64, True), ]) def forward(self, x, y): return torch.bitwise_and(x, y) @register_test_case(module_factory=lambda: ElementwiseAndIntegerModule()) def ElementwiseAndIntegerModule_basic(module, tu: TestUtils): module.forward( torch.randint(-10, 10, (3, 4)).to(torch.int32), torch.randint(-10, 10, (3, 4))) class ElementwiseSubScalarIntModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.int64, True), ]) def forward(self, x): return torch.sub(x, 2.1, alpha=2) @register_test_case(module_factory=lambda: ElementwiseSubScalarIntModule()) def ElementwiseSubScalarIntModule_basic(module, tu: TestUtils): module.forward(torch.randint(10, (3, 4))) class ElementwiseSubScalarFloatModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.sub(x, 2.1) @register_test_case(module_factory=lambda: ElementwiseSubScalarFloatModule()) def ElementwiseSubScalarFloatModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) class ElementwiseAddScalarIntModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.int64, True), ]) def forward(self, x): return torch.add(x, 3.0) @register_test_case(module_factory=lambda: ElementwiseAddScalarIntModule()) def ElementwiseAddScalarIntModule_basic(module, tu: TestUtils): module.forward(torch.randint(10, (3, 4))) class ElementwiseAddScalarFloatModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.add(x, 3.0, alpha=2) @register_test_case(module_factory=lambda: ElementwiseAddScalarFloatModule()) def ElementwiseAddScalarFloatModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4))