import torch from torch_mlir_e2e_test.torchscript.framework import TestUtils from torch_mlir_e2e_test.torchscript.registry import register_test_case from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export # ============================================================================== class UniformModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float64, True), ([-1, -1], torch.float64, True), ([-1, -1], torch.float64, True), ]) def forward(self, x, y, z): a = torch.ops.aten.uniform_(x, 1.0, 10.0) b = torch.ops.aten.uniform_(y, -20.0, -5.0) c = torch.ops.aten.uniform_(z, -15.0, 3.0) std = torch.cat([ torch.flatten(torch.std(a)), torch.flatten(torch.std(b)), torch.flatten(torch.std(c)) ]) mean = torch.cat([ torch.flatten(torch.mean(a)), torch.flatten(torch.mean(b)), torch.flatten(torch.mean(c)) ]) return std, mean @register_test_case(module_factory=lambda: UniformModule()) def UniformModule_basic(module, tu: TestUtils): module.forward( tu.rand(256, 512, 64).double(), tu.rand(512, 1024, 128).double(), tu.rand(512, 256, 1024).double())