# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # Also available under a BSD-style license. See LICENSE. import torch import torchvision.models as models from torch_mlir_e2e_test.torchscript.framework import TestUtils from torch_mlir_e2e_test.torchscript.registry import register_test_case from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export # ============================================================================== class ResNet18Module(torch.nn.Module): def __init__(self): super().__init__() # Reset seed to make model deterministic. torch.manual_seed(0) self.resnet = models.resnet18() self.train(False) @export @annotate_args([ None, ([-1, 3, -1, -1], torch.float32, True), ]) def forward(self, img): return self.resnet.forward(img) @register_test_case(module_factory=lambda: ResNet18Module()) def ResNet18Module_basic(module, tu: TestUtils): module.forward(tu.rand(1, 3, 224, 224)) class ResNet18StaticModule(torch.nn.Module): def __init__(self): super().__init__() # Reset seed to make model deterministic. torch.manual_seed(0) self.resnet = models.resnet18() self.train(False) @export @annotate_args([ None, ([1, 3, 224, 224], torch.float32, True), ]) def forward(self, img): return self.resnet.forward(img) @register_test_case(module_factory=lambda: ResNet18StaticModule()) def ResNet18StaticModule_basic(module, tu: TestUtils): module.forward(tu.rand(1, 3, 224, 224)) class IouOfModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ]) def forward(self, bbox1, bbox2): area1 = (bbox1[:, 2] - bbox1[:, 0]) * (bbox1[:, 3] - bbox1[:, 1]) area2 = (bbox2[:, 2] - bbox2[:, 0]) * (bbox2[:, 3] - bbox2[:, 1]) lt = torch.maximum(bbox1[:, :2], bbox2[:, :2]) rb = torch.minimum(bbox1[:, 2:], bbox2[:, 2:]) overlap_coord = (rb - lt).clip(0) overlap = overlap_coord[:, 0] * overlap_coord[:, 1] union = area1 + area2 - overlap return overlap / union @register_test_case(module_factory=lambda: IouOfModule()) def IouOfModule_basic(module, tu: TestUtils): module.forward(tu.rand(1024, 4), tu.rand(1024, 4))