# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # Also available under a BSD-style license. See LICENSE. import torch from torch_mlir_e2e_test.torchscript.framework import TestUtils from torch_mlir_e2e_test.torchscript.registry import register_test_case from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export # ============================================================================== class MmModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ]) def forward(self, lhs, rhs): return torch.mm(lhs, rhs) @register_test_case(module_factory=lambda: MmModule()) def MmModule_basic(module, tu: TestUtils): module.forward(tu.rand(4, 4), tu.rand(4, 4)) @register_test_case(module_factory=lambda: MmModule()) def MmModule_chained(module, tu: TestUtils): res = module.forward(tu.rand(4, 4), tu.rand(4, 4)) module.forward(res, res) # ============================================================================== class BmmModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ([-1, -1, -1], torch.float32, True), ]) def forward(self, lhs, rhs): return torch.bmm(lhs, rhs) @register_test_case(module_factory=lambda: BmmModule()) def BmmModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 5), tu.rand(3, 5, 4)) # ============================================================================== # A subgraph with multiple mm ops. class MmDagModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([4, 4], torch.float32, True), ([4, 4], torch.float32, True), ]) def forward(self, lhs, rhs): return torch.mm(lhs, torch.mm(lhs, rhs)) @register_test_case(module_factory=lambda: MmDagModule()) def MmDagModule_basic(module, tu: TestUtils): module.forward(tu.rand(4, 4), tu.rand(4, 4)) # ============================================================================== class MmTanhModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ]) def forward(self, lhs, rhs): return torch.tanh(self.matmul(lhs, rhs)) def matmul(self, lhs, rhs): return torch.mm(lhs, rhs) # ============================================================================== @register_test_case(module_factory=lambda: MmTanhModule()) def MmTanhModule_basic(module, tu: TestUtils): module.forward(tu.rand(4, 2), tu.rand(2, 4)) # ============================================================================== class AddmmModuleFloat(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ]) def forward(self, M, mat1, mat2): return torch.addmm(M, mat1, mat2, beta=3.0, alpha=7.0) @register_test_case(module_factory=lambda: AddmmModuleFloat()) def AddmmModuleFloat_basic(module, tu: TestUtils): module.forward(tu.rand(4, 4), tu.rand(4, 2), tu.rand(2, 4)) # ============================================================================== class AddmmModuleBroadcastable(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ]) def forward(self, M, mat1, mat2): return torch.addmm(M, mat1, mat2, beta=2.0, alpha=7.0) @register_test_case(module_factory=lambda: AddmmModuleBroadcastable()) def AddmmModule_broadcastable(module, tu: TestUtils): module.forward(tu.rand(1, 2), tu.rand(3, 2), tu.rand(2, 2)) # ============================================================================== class AddmmModuleDifferentRankBroadcastable(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1], torch.float32, True), ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ]) def forward(self, M, mat1, mat2): return torch.addmm(M, mat1, mat2, beta=11.0, alpha=7.0) @register_test_case(module_factory=lambda: AddmmModuleDifferentRankBroadcastable()) def AddmmModule_differentRankBroadcastable(module, tu: TestUtils): module.forward(tu.rand(3), tu.rand(3, 2), tu.rand(2, 3)) # ============================================================================== class AdaptiveAvgPool2dModule(torch.nn.Module): def __init__(self): super().__init__() self.aap2d = torch.nn.AdaptiveAvgPool2d((1, 1)) @export @annotate_args([ None, ([-1, -1, -1, -1], torch.float32, True), ]) def forward(self, x): return self.aap2d(x) @register_test_case(module_factory=lambda: AdaptiveAvgPool2dModule()) def AdaptiveAvgPool2dModule_basic(module, tu: TestUtils): module.forward(tu.rand(10, 3, 8, 9)) # ============================================================================== class FlattenStaticModule(torch.nn.Module): def __init__(self): super().__init__() self.flat = torch.nn.Flatten(2, 4) @export @annotate_args([ None, ([10, 3, 8, 9, 3, 4], torch.float32, True), ]) def forward(self, x): return self.flat(x) @register_test_case(module_factory=lambda: FlattenStaticModule()) def FlattenStaticModule_basic(module, tu: TestUtils): module.forward(tu.rand(10, 3, 8, 9, 3, 4)) # ============================================================================== class FlattenRank0Module(torch.nn.Module): def __init__(self): super().__init__() self.flat = torch.nn.Flatten(-1, -1) @export @annotate_args([ None, ([], torch.float32, True), ]) def forward(self, x): return self.flat(x) @register_test_case(module_factory=lambda: FlattenRank0Module()) def FlattenRank0Module_basic(module, tu: TestUtils): module.forward(torch.tensor(4.0)) # ============================================================================== class FlattenDynamicModule(torch.nn.Module): def __init__(self): super().__init__() self.flat = torch.nn.Flatten(2, 4) @export @annotate_args([ None, ([-1, -1, -1, 9, 3, -1], torch.float32, True), ]) def forward(self, x): return self.flat(x) @register_test_case(module_factory=lambda: FlattenDynamicModule()) def FlattenDynamicModule_basic(module, tu: TestUtils): module.forward(tu.rand(10, 3, 8, 9, 3, 4)) # ============================================================================== class MaxPool2dModule(torch.nn.Module): def __init__(self): super().__init__() self.mp2d = torch.nn.MaxPool2d(kernel_size=[6, 8], stride=[2, 2], padding=[3, 4], dilation=2) @export @annotate_args([ None, ([-1, -1, -1, -1], torch.float32, True), ]) def forward(self, x): return self.mp2d(x) # ============================================================================== @register_test_case(module_factory=lambda: MaxPool2dModule()) def MaxPool2dModule_basic(module, tu: TestUtils): module.forward(tu.rand(1, 1, 20, 20) - 0.5) class TransposeIntModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([3, 4, 2], torch.float32, True), ]) def forward(self, x): return torch.transpose(x, 0, 1) # ============================================================================== @register_test_case(module_factory=lambda: TransposeIntModule()) def TransposeIntModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 2)) class PermuteModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([3, 4, 2], torch.float32, True) ]) def forward(self, x): return x.permute(0, 2, 1) @register_test_case(module_factory=lambda: PermuteModule()) def PermuteModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 2)) # ============================================================================== class TransposeIntNegDimsModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([3, 4, 2], torch.float32, True), ]) def forward(self, x): return torch.transpose(x, -1, -2) # ============================================================================== @register_test_case(module_factory=lambda: TransposeIntNegDimsModule()) def TransposeIntNegDimsModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 2)) class PermuteNegativeIndexModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([3, 4, 2], torch.float32, True) ]) def forward(self, x): return x.permute(0, -1, 1) # ============================================================================== @register_test_case(module_factory=lambda: PermuteNegativeIndexModule()) def PermuteNegativeIndexModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 2)) class TensorsConcatModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ([-1, -1, -1], torch.float32, True), ([-1, -1, -1], torch.float32, True), ]) def forward(self, x, y, z): return torch.cat([x, y, z], 1) @register_test_case(module_factory=lambda: TensorsConcatModule()) def TensorsConcatModule_basic(module, tu: TestUtils): module.forward(tu.rand(2, 2, 4), tu.rand(2, 1, 4), tu.rand(2, 3, 4)) # ============================================================================== class GatherModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ([-1, -1, -1], torch.int64, True), ]) def forward(self, tensor, indices): return torch.gather(tensor, 2, indices) @register_test_case(module_factory=lambda: GatherModule()) def GatherModule_basic(module, tu: TestUtils): module.forward(tu.rand(2, 3, 4), torch.tensor([[[1, 2, 3], [1, 2, 3]]])) # ============================================================================== class AddSizeIntModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, tensor): # This is a workaround for not supporting scalar arguments. # TODO: pass in dim as an argument to the forward method when scalar # arguments are supported. return tensor.add(tensor, alpha=tensor.size(1)) @register_test_case(module_factory=lambda: AddSizeIntModule()) def AddSizeIntModule_basic(module, tu: TestUtils): module.forward(torch.randn(3, 3)) # ============================================================================== class AddSizeIntNegDimModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, tensor): # This is a workaround for not supporting scalar arguments. # TODO: pass in dim as an argument to the forward method when scalar # arguments are supported. return tensor.add(tensor, alpha=tensor.size(-2)) @register_test_case(module_factory=lambda: AddSizeIntNegDimModule()) def AddSizeIntNegDimModule_basic(module, tu: TestUtils): module.forward(torch.randn(3, 3)) # ============================================================================== class EmbeddingModule(torch.nn.Module): def __init__(self): super().__init__() torch.manual_seed(0) self.embed = torch.nn.Embedding(num_embeddings=100, embedding_dim=50, padding_idx=4) @export @annotate_args([ None, ([-1, -1], torch.int64, True), ]) def forward(self, indices): return self.embed.forward(indices) @register_test_case(module_factory=lambda: EmbeddingModule()) def EmbeddingModule_basic(module, tu: TestUtils): module.forward(torch.randint(100, (3, 3))) # ============================================================================== class SoftmaxIntModule(torch.nn.Module): def __init__(self): super().__init__() self.softmax = torch.nn.Softmax(2) @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, tensor): return self.softmax.forward(tensor) @register_test_case(module_factory=lambda: SoftmaxIntModule()) def SoftmaxIntModule_basic(module, tu: TestUtils): module.forward(torch.randn(3, 2, 4)) class _SoftmaxModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, tensor): return torch.ops.aten._softmax(tensor, 0, False) @register_test_case(module_factory=lambda: _SoftmaxModule()) def _SoftmaxModule_basic(module, tu: TestUtils): module.forward(torch.randn(3, 2, 4)) # ============================================================================== class SoftmaxIntNegDimModule(torch.nn.Module): def __init__(self): super().__init__() torch.manual_seed(0) self.softmax = torch.nn.Softmax(-2) @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, tensor): return self.softmax.forward(tensor) @register_test_case(module_factory=lambda: SoftmaxIntNegDimModule()) def SoftmaxIntNegDimModule_basic(module, tu: TestUtils): module.forward(torch.randn(3, 2, 4)) # ============================================================================== class SoftmaxIntArgTypeF64Module(torch.nn.Module): def __init__(self): super().__init__() torch.manual_seed(0) self.softmax = torch.nn.Softmax(2) @export @annotate_args([ None, ([-1, -1, -1], torch.float64, True), ]) def forward(self, tensor): return self.softmax.forward(tensor) @register_test_case(module_factory=lambda: SoftmaxIntArgTypeF64Module()) def SoftmaxIntArgTypeF64Module_basic(module, tu: TestUtils): module.forward(torch.randn(3, 2, 4).double()) # ============================================================================== class BroadcastToModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, 1], torch.float32, True), ]) def forward(self, x): return torch.broadcast_to(x, [1, -1, -1, 4]) @register_test_case(module_factory=lambda: BroadcastToModule()) def BroadcastToModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 1, 1)) # ============================================================================== class ExpandModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, 1], torch.float32, True), ]) def forward(self, x): return x.expand([1, -1, -1, 4]) @register_test_case(module_factory=lambda: ExpandModule()) def ExpandModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 1, 1)) # ============================================================================== class ContiguousModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return x.contiguous() @register_test_case(module_factory=lambda: ContiguousModule()) def ContiguousModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 1)) class TensorToInt(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([], torch.int64, True), ]) def forward(self, x): return int(x) @register_test_case(module_factory=lambda: TensorToInt()) def TensorToInt_basic(module, tu: TestUtils): module.forward(torch.randint(10,[])) class LogSoftmaxIntModule(torch.nn.Module): def __init__(self): super().__init__() self.log_softmax = torch.nn.LogSoftmax(2) @export @annotate_args([ None, ([-1, -1, -1], torch.float64, True), ]) def forward(self, tensor): return self.log_softmax.forward(tensor) @register_test_case(module_factory=lambda: LogSoftmaxIntModule()) def LogSoftmaxIntModule_basic(module, tu: TestUtils): module.forward(torch.randn(3, 2, 4).double()) class NumToTensorIntModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ]) def forward(self): return torch.ops.prim.NumToTensor(1) @register_test_case(module_factory=lambda: NumToTensorIntModule()) def NumToTensorIntModule_basic(module, tu: TestUtils): module.forward() class NumToTensorFloatModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ]) def forward(self): return torch.ops.prim.NumToTensor(1.0) @register_test_case(module_factory=lambda: NumToTensorFloatModule()) def NumToTensorFloatModule_basic(module, tu: TestUtils): module.forward() # ============================================================================== # This test can be removed once we have one real op returning 3 float32 tensors class ReturnThreeTensorFloat32(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ]) def forward(self, a, b, c): return a, b, c @register_test_case(module_factory=lambda: ReturnThreeTensorFloat32()) def ReturnThreeTensorFloat32_basic(module, tu: TestUtils): module.forward(tu.rand(2, 3), tu.rand(2, 3), tu.rand(2, 3)) class AddCMulModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ]) def forward(self, input, tensor1, tensor2): return torch.addcmul(input, tensor1, tensor2, value=1.0) @register_test_case(module_factory=lambda: AddCMulModule()) def AddCMulModule_basic(module, tu: TestUtils): module.forward(tu.rand(1,3), tu.rand(1,3), tu.rand(1,3)) class AddCDivModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ]) def forward(self, input, tensor1, tensor2): return torch.addcdiv(input, tensor1, tensor2, value=1.0) @register_test_case(module_factory=lambda: AddCDivModule()) def AddCDivModule_basic(module, tu: TestUtils): module.forward(tu.rand(1,3), tu.rand(1,3), tu.rand(1,3)) # ============================================================================== class tensorIntModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ]) def forward(self): a = 1 return torch.tensor(a) @register_test_case(module_factory=lambda: tensorIntModule()) def TensorIntModule_basic(module, tu: TestUtils): module.forward() class tensorFloatModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ]) def forward(self): a = 1.0 return torch.tensor(a) @register_test_case(module_factory=lambda: tensorFloatModule()) def TensorFloatModule_basic(module, tu: TestUtils): module.forward() # ============================================================================== class DropoutModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.dropout(x, 0.0, False) @register_test_case(module_factory=lambda: DropoutModule()) def DropoutModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) class MeanModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([3, 4], torch.float32, True), ]) def forward(self, x): return torch.mean(x) @register_test_case(module_factory=lambda: MeanModule()) def MeanModule_basic(module, tu: TestUtils): module.forward(torch.randn(3, 4)) class MeanDynamicSizesModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.mean(x) @register_test_case(module_factory=lambda: MeanDynamicSizesModule()) def MeanDynamicSizesModule_basic(module, tu: TestUtils): module.forward(torch.randn(3, 4)) class NumelModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ]) def forward(self, input): return torch.numel(input) @register_test_case(module_factory=lambda: NumelModule()) def NumelModule_basic(module, tu: TestUtils): module.forward(tu.rand(4, 3, 5)) class NumelZeroRankModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([], torch.int64, True), ]) def forward(self, input): return torch.numel(input) @register_test_case(module_factory=lambda: NumelZeroRankModule()) def NumelZeroRankModule_basic(module, tu: TestUtils): module.forward(torch.randint(10,[])) class BoolTensorReturnFalseModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1], torch.bool, True), ]) def forward(self, a): return a @register_test_case(module_factory=lambda: BoolTensorReturnFalseModule()) def BoolTensorReturnFalseModule_basic(module, tu: TestUtils): module.forward(torch.tensor([0, 0], dtype=torch.bool)) class BoolTensorReturnTrueModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1], torch.bool, True), ]) def forward(self, a): return a @register_test_case(module_factory=lambda: BoolTensorReturnTrueModule()) def BoolTensorReturnTrueModule_basic(module, tu: TestUtils): module.forward(torch.tensor([1, 1, 1, 1, 1], dtype=torch.bool)) class BoolTensorReturnMixedModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.bool, True), ]) def forward(self, a): return a @register_test_case(module_factory=lambda: BoolTensorReturnMixedModule()) def BoolTensorReturnMixedModule_basic(module, tu: TestUtils): module.forward(torch.tensor([[1, 0], [0,1]], dtype=torch.bool)) # ============================================================================== class TModuleRank2(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, lhs): return torch.t(lhs) @register_test_case(module_factory=lambda: TModuleRank2()) def TModuleRank2_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) class TModuleRank1(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1], torch.float32, True), ]) def forward(self, lhs): return torch.t(lhs) @register_test_case(module_factory=lambda: TModuleRank1()) def TModuleRank1_basic(module, tu: TestUtils): module.forward(tu.rand(3)) class TModuleRank0(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([], torch.float32, True), ]) def forward(self, lhs): return torch.t(lhs) @register_test_case(module_factory=lambda: TModuleRank0()) def TModuleRank0_basic(module, tu: TestUtils): module.forward(torch.tensor(7, dtype=torch.float32))