# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # Also available under a BSD-style license. See LICENSE. # Script for generating the torch-mlir wheel. # ``` # $ python setup.py bdist_wheel # ``` # # It is recommended to build with Ninja and ccache. To do so, set environment # variables by prefixing to above invocations: # ``` # CMAKE_GENERATOR=Ninja CMAKE_C_COMPILER_LAUNCHER=ccache CMAKE_CXX_COMPILER_LAUNCHER=ccache # ``` # # On CIs, it is often advantageous to re-use/control the CMake build directory. # This can be set with the TORCH_MLIR_CMAKE_BUILD_DIR env var. # Additionally, the TORCH_MLIR_CMAKE_BUILD_DIR_ALREADY_BUILT env var will # prevent this script from attempting to build the directory, and will simply # use the (presumed already built) directory as-is. # # The package version can be set with the TORCH_MLIR_PYTHON_PACKAGE_VERSION # environment variable. For example, this can be "20220330.357" for a snapshot # release on 2022-03-30 with build number 357. # # Implementation notes: # The contents of the wheel is just the contents of the `python_packages` # directory that our CMake build produces. We go through quite a bit of effort # on the CMake side to organize that directory already, so we avoid duplicating # that here, and just package up its contents. import os import shutil import subprocess import sys import sysconfig from distutils.command.build import build as _build from distutils.sysconfig import get_python_inc from setuptools import setup, Extension from setuptools.command.build_ext import build_ext from setuptools.command.build_py import build_py import torch PACKAGE_VERSION = os.environ.get("TORCH_MLIR_PYTHON_PACKAGE_VERSION") or "0.0.1" # Build phase discovery is unreliable. Just tell it what phases to run. class CustomBuild(_build): def run(self): self.run_command("build_py") self.run_command("build_ext") self.run_command("build_scripts") class CMakeBuild(build_py): def run(self): target_dir = self.build_lib cmake_build_dir = os.getenv("TORCH_MLIR_CMAKE_BUILD_DIR") if not cmake_build_dir: cmake_build_dir = os.path.abspath( os.path.join(target_dir, "..", "cmake_build")) python_package_dir = os.path.join(cmake_build_dir, "tools", "torch-mlir", "python_packages", "torch_mlir") if not os.getenv("TORCH_MLIR_CMAKE_BUILD_DIR_ALREADY_BUILT"): src_dir = os.path.abspath(os.path.dirname(__file__)) llvm_dir = os.path.join( src_dir, "externals", "llvm-project", "llvm") cmake_args = [ f"-DCMAKE_BUILD_TYPE=Release", f"-DPython3_EXECUTABLE={sys.executable}", f"-DLLVM_TARGETS_TO_BUILD=host", f"-DMLIR_ENABLE_BINDINGS_PYTHON=ON", f"-DLLVM_ENABLE_PROJECTS=mlir", f"-DLLVM_EXTERNAL_PROJECTS=torch-mlir;torch-mlir-dialects", f"-DLLVM_EXTERNAL_TORCH_MLIR_SOURCE_DIR={src_dir}", f"-DLLVM_EXTERNAL_TORCH_MLIR_DIALECTS_SOURCE_DIR={src_dir}/externals/llvm-external-projects/torch-mlir-dialects", # Optimization options for building wheels. f"-DCMAKE_VISIBILITY_INLINES_HIDDEN=ON", f"-DCMAKE_C_VISIBILITY_PRESET=hidden", f"-DCMAKE_CXX_VISIBILITY_PRESET=hidden", f"-DTORCH_MLIR_ENABLE_LTC={'ON' if int(os.environ.get('TORCH_MLIR_ENABLE_LTC', 1)) else 'OFF'}", ] os.makedirs(cmake_build_dir, exist_ok=True) cmake_cache_file = os.path.join(cmake_build_dir, "CMakeCache.txt") if os.path.exists(cmake_cache_file): os.remove(cmake_cache_file) # NOTE: With repeated builds for different Python versions, the # prior version binaries will continue to accumulate. IREE uses # a separate install step and cleans the install directory to # keep this from happening. That is the most robust. Here we just # delete the directory where we build native extensions to keep # this from happening but still take advantage of most of the # build cache. mlir_libs_dir = os.path.join(python_package_dir, "torch_mlir", "_mlir_libs") if os.path.exists(mlir_libs_dir): print(f"Removing _mlir_mlibs dir to force rebuild: {mlir_libs_dir}") shutil.rmtree(mlir_libs_dir) else: print(f"Not removing _mlir_libs dir (does not exist): {mlir_libs_dir}") subprocess.check_call(["cmake", llvm_dir] + cmake_args, cwd=cmake_build_dir) subprocess.check_call(["cmake", "--build", ".", "--target", "TorchMLIRPythonModules"], cwd=cmake_build_dir) if os.path.exists(target_dir): shutil.rmtree(target_dir, ignore_errors=False, onerror=None) shutil.copytree(python_package_dir, target_dir, symlinks=False) class CMakeExtension(Extension): def __init__(self, name, sourcedir=""): Extension.__init__(self, name, sources=[]) self.sourcedir = os.path.abspath(sourcedir) class NoopBuildExtension(build_ext): def build_extension(self, ext): pass setup( name="torch-mlir", version=f"{PACKAGE_VERSION}", author="Sean Silva", author_email="silvasean@google.com", description="First-class interop between PyTorch and MLIR", long_description="", include_package_data=True, cmdclass={ "build": CustomBuild, "built_ext": NoopBuildExtension, "build_py": CMakeBuild, }, ext_modules=[ CMakeExtension("torch_mlir._mlir_libs._jit_ir_importer"), ], install_requires=[ "numpy", # To avoid issues with drift for each nightly build, we pin to the # exact version we built against. # TODO: This includes the +cpu specifier which is overly # restrictive and a bit unfortunate. f"torch=={torch.__version__}", ], zip_safe=False, )