//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // Also available under a BSD-style license. See LICENSE. // //===----------------------------------------------------------------------===// #include "torch-mlir/Conversion/TorchToTosa/TorchToTosa.h" #include "torch-mlir/Conversion/TorchToTosa/TosaLegalizeCommon.h" #include "torch-mlir/Conversion/TorchToTosa/TosaLegalizeUtils.h" #include "torch-mlir/Conversion/Utils/Utils.h" #include "../PassDetail.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/Tosa/IR/TosaOps.h" #include "mlir/Dialect/Traits.h" #include "mlir/IR/Matchers.h" #include "mlir/Transforms/DialectConversion.h" #include "torch-mlir/Dialect/Torch/IR/TorchDialect.h" #include "torch-mlir/Dialect/Torch/IR/TorchOps.h" #include "torch-mlir/Dialect/Torch/IR/TorchTypes.h" #include "torch-mlir/Dialect/Torch/Utils/Utils.h" #include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionDialect.h" #include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h" using namespace mlir; using namespace mlir::torch; using namespace mlir::torch::Torch; namespace { // These legalizations are for unary ops with only for floating point datatypes. // There is no supported quantized integer mode for these. template class ConvertAtenUnaryFPOnlyOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Value self = adaptor.getSelf(); auto selfTy = self.getType().cast(); if (!selfTy) return rewriter.notifyMatchFailure(op, "Only Tensor types supported in TOSA"); if (selfTy.getElementType().isa()) { rewriter.replaceOpWithNewOp( op, OpConversionPattern::getTypeConverter()->convertType( op.getType()), self); return success(); } else { return rewriter.notifyMatchFailure( op, "Only floating-point datatype legalization supported"); } } }; // These unary op legalizations are identical for floating-point // or quantized types template class ConvertAtenUnaryOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { rewriter.replaceOpWithNewOp( op, OpConversionPattern::getTypeConverter()->convertType( op.getType()), adaptor.getSelf()); return success(); } }; // These binary op legalizations are identical for floating-point // or quantized types template class ConvertAtenBinaryOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Value lhs = adaptor.getSelf(); auto lhsTy = lhs.getType().cast(); Value rhs = adaptor.getOther(); auto rhsTy = rhs.getType().cast(); if (!lhsTy || !rhsTy) return rewriter.notifyMatchFailure(op, "Only Tensor types supported in TOSA"); auto outTy = OpConversionPattern::getTypeConverter() ->convertType(op.getType()) .template cast(); auto binaryOp = tosa::createBinaryOpAndCast(rewriter, op, outTy, lhs, rhs); rewriter.replaceOp(op, binaryOp.getResult()); return success(); } }; template static bool isInValidRange(bool isFloat, const double &doubleValue, bool isInt, const int64_t &intValue) { if (isFloat) { // Do a round-trip check here instead of numeric limits due to // compiler warnings around double <-> int conversion. return (doubleValue == static_cast(static_cast(doubleValue))); } else { assert(isInt); return (intValue >= static_cast(std::numeric_limits::min())) && (intValue <= static_cast(std::numeric_limits::max())); } return true; } // FIXME: This will eventually go into a Tosa*Utils file. LogicalResult torchScalarToTosaTensor(ConversionPatternRewriter &rewriter, Operation *op, Value torchScalarValue, Value &tosaTensor, Type dtype, llvm::ArrayRef dshape) { // Retrieve a const float or int value but create the out Tensor with dtype. double doubleValue; auto isFloat = matchPattern(torchScalarValue, m_TorchConstantFloat(&doubleValue)); int64_t intValue; auto isInt = matchPattern(torchScalarValue, m_TorchConstantInt(&intValue)); if (!isFloat && !isInt) return rewriter.notifyMatchFailure(op, "Unable to extract the scalar constant"); if (dtype.isa()) { tosaTensor = tosa::getConstTensor(rewriter, op, (isFloat ? doubleValue : intValue), dshape, dtype) .value(); } else if (auto intType = dtype.dyn_cast()) { auto w = intType.getWidth(); if (w != 1 && w != 32 && w != 64) return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { diag << "Unsupported integer type: " << intType; }); if (w == 1) { if (!isInValidRange(isFloat, doubleValue, isInt, intValue)) { return rewriter.notifyMatchFailure( op, "Supplied value of scalar constant exceeds limits " "of destination type"); } bool d = isFloat ? static_cast(doubleValue) : static_cast(intValue); tosaTensor = tosa::getConstTensor(rewriter, op, {d}, dshape).value(); } else if (w == 32) { if (!isInValidRange(isFloat, doubleValue, isInt, intValue)) { return rewriter.notifyMatchFailure( op, "Supplied value of scalar constant exceeds limits " "of destination type"); } int32_t d = isFloat ? static_cast(doubleValue) : static_cast(intValue); tosaTensor = tosa::getConstTensor(rewriter, op, {d}, dshape).value(); } else if (w == 64) { if (!isInValidRange(isFloat, doubleValue, isInt, intValue)) { return rewriter.notifyMatchFailure( op, "Supplied value of scalar constant exceeds limits " "of destination type"); } int64_t d = (isFloat ? static_cast(doubleValue) : intValue); tosaTensor = tosa::getConstTensor(rewriter, op, {d}, dshape).value(); } } else { return rewriter.notifyMatchFailure(op, "Usupported element type"); } return success(); } LogicalResult torchAlphaToTosaTensor(ConversionPatternRewriter &rewriter, Operation *op, Value alphaScalar, Value &alphaTensor, Type dtype, bool checkForUnity) { if (succeeded(torchScalarToTosaTensor(rewriter, op, alphaScalar, alphaTensor, dtype, {}))) return success(); // `alpha` has not been specified. int64_t alphaValue; if (!matchPattern(alphaScalar, m_TorchConstantInt(&alphaValue))) return rewriter.notifyMatchFailure( op, "Currently only scalar constants are supported for " "alpha in TOSA operation"); // When no alpha has been specified, this must be 1. if (checkForUnity && alphaValue != 1) return rewriter.notifyMatchFailure(op, "Unsupported integer value for alpha"); alphaTensor = tosa::getConstTensor( rewriter, op, {static_cast(alphaValue)}, {}, dtype) .value(); return success(); } // These binary op legalizations are specific to add/sub which have an // alpha multiplier. template class ConvertAtenAddSubOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { // left : tensor: tensor // right : scalar: i32/i64/f32 // tensor: tensor // alpha : scalar: i32/i64/f32 // output: tensor: tensor Value lhs = adaptor.getSelf(); auto lhsType = lhs.getType().dyn_cast(); Value rhs = adaptor.getOther(); auto rhsType = rhs.getType().dyn_cast(); if (!lhsType) return rewriter.notifyMatchFailure(op, "Only Tensor types supported in TOSA"); if (auto lhsElemTy = lhsType.getElementType().dyn_cast()) { if (lhsElemTy.getWidth() > 64) return rewriter.notifyMatchFailure( op, "Integers with widths greater than 64 are not supported"); } // Get output type: tensor auto outType = OpConversionPattern::getTypeConverter() ->convertType(op.getType()) .template cast(); Type outElemTy = outType.getElementType(); if (!outElemTy.isIntOrFloat()) { return rewriter.notifyMatchFailure( op, "Only floating-point or integer datatype legalization supported"); } Type rhsAlphaMulElemType; if (outElemTy.isa()) { rhsAlphaMulElemType = outElemTy; } else { // if output type is 64, input type should also be 32 rhsAlphaMulElemType = rewriter.getIntegerType(32); } // if right is scalar, rhgType==None, which need to be manually cast to // TensorType else right is tensor, rhsType==tensor Value rhsAsTensor; if (!rhsType) { if (failed(torchScalarToTosaTensor(rewriter, op, op.getOther(), rhsAsTensor, rhsAlphaMulElemType, {}))) return rewriter.notifyMatchFailure( op, "Currently only scalar constants are supported for " "conversion in TOSA operation"); } else if (rhsType.getElementType() != rhsAlphaMulElemType) { // right is tensor, rhsType == tensor // right must be cast to same type as the alpha, so MulOp success rhs = rewriter.create( op->getLoc(), RankedTensorType::get(rhsType.getShape(), rhsAlphaMulElemType), rhs); // reinitialize right value type to tensor rhsType = rhs.getType().dyn_cast(); } auto rhsTensor = rhsType ? rhs : rhsAsTensor; // Handle scalar value alpha. // It should be either f32/i32 Value alphaTensor; if (failed(torchAlphaToTosaTensor(rewriter, op.getOperation(), op.getAlpha(), alphaTensor, rhsAlphaMulElemType, /*checkForUnity=*/false))) { return rewriter.notifyMatchFailure( op, "Currently only scalar constants are supported for " "alpha in conversion to TOSA operation"); } auto mulAlphaOp = tosa::createMulOpAndCast( rewriter, op, rhsType ? rhsType : RankedTensorType::get({}, rhsAlphaMulElemType), rhsTensor, alphaTensor, /*shift=*/0); if (outElemTy.isInteger(64)) { // Tosa doesn't support 64-bit elementwise addition and subtraction. // if outElemTy tensor, mulTensor must be tensor, // left value could be tensor type, cast left value to // tensor type auto addOrSubi64Op = tosa::createBinaryOpAndCast( rewriter, op, RankedTensorType::get(outType.getShape(), rhsAlphaMulElemType), lhs, mulAlphaOp); // cast tensor back to tensor rewriter.replaceOpWithNewOp(op, outType, addOrSubi64Op); return success(); } auto binaryOp = tosa::createBinaryOpAndCast(rewriter, op, outType, lhs, mulAlphaOp); rewriter.replaceOp(op, binaryOp.getResult()); return success(); } }; // namespace // Binary op legalizations for comparator ops. template class ConvertAtenCompareOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Value lhs = adaptor.getSelf(); auto lhsTy = lhs.getType().dyn_cast(); Value rhs = adaptor.getOther(); auto rhsTy = rhs.getType().dyn_cast(); if (!lhsTy) return rewriter.notifyMatchFailure(op, "Only Tensor types supported in TOSA"); auto lhsElemTy = lhsTy.getElementType(); if (!lhsElemTy.isIntOrFloat()) return rewriter.notifyMatchFailure( op, "Only floating-point or integer datatype legalization supported"); // For bitwise operators, only integer datatype legalization is supported constexpr bool isBitwiseOp = std::is_same() || std::is_same() || std::is_same(); if (lhsElemTy.isa() && isBitwiseOp) { return rewriter.notifyMatchFailure(op, "For bitwise operators, only integer " "datatype legalization is supported"); } Value rhsAsTensor; if (!rhsTy) { if (failed(torchScalarToTosaTensor(rewriter, op, op.getOther(), rhsAsTensor, lhsElemTy, {}))) return rewriter.notifyMatchFailure( op, "Currently only scalar constants are supported for " "conversion in TOSA operation"); } auto rhsTensor = rhsTy ? rhs : rhsAsTensor; // There is no Lesser operator in TOSA. auto swapLhsRhs = (std::is_same() || std::is_same()); // Promote lhs and rhs dtypes for bitwise operators. TensorType resultTy = OpConversionPattern::getTypeConverter() ->convertType(op.getType()) .template cast(); if (isBitwiseOp) { lhs = tosa::promoteType(rewriter, lhs, resultTy); rhsTensor = tosa::promoteType(rewriter, rhsTensor, resultTy); } auto resultOp = rewriter.create(op.getLoc(), resultTy, (swapLhsRhs ? rhsTensor : lhs), (swapLhsRhs ? lhs : rhsTensor)); // There is no NE operator in TOSA. if (std::is_same() || std::is_same()) rewriter.replaceOpWithNewOp(op, resultTy, resultOp.getResult()); else rewriter.replaceOp(op, resultOp.getResult()); return success(); } }; // Binary op legalizations for Mul variants. template class ConvertAtenMulOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Value lhs = adaptor.getSelf(); auto lhsType = lhs.getType().dyn_cast(); if (!lhsType) return rewriter.notifyMatchFailure(op, "Only Tensor types supported in TOSA"); auto outType = OpConversionPattern::getTypeConverter() ->convertType(op.getType()) .template cast(); Type outElemTy = outType.getElementType(); if (!outElemTy.isIntOrFloat()) return rewriter.notifyMatchFailure( op, "Only floating-point or integer datatype legalization supported"); Value rhsTensor; if (std::is_same()) { rhsTensor = lhs; } else { Value rhsAsTensor; Value rhs = adaptor.getOther(); auto rhsType = rhs.getType().dyn_cast(); if (!rhsType) { if (failed(torchScalarToTosaTensor(rewriter, op, op.getOther(), rhsAsTensor, outElemTy, {}))) { return rewriter.notifyMatchFailure( op, "Currently only scalar constants are supported for " "conversion in TOSA operation"); } } rhsTensor = rhsType ? rhs : rhsAsTensor; } if (outElemTy.isa() || outElemTy.isa()) { auto outType = OpConversionPattern::getTypeConverter() ->convertType(op.getType()) .template cast(); auto mulOp = tosa::createMulOpAndCast(rewriter, op, outType, lhs, rhsTensor, /*shift=*/0); rewriter.replaceOp(op, mulOp.getResult()); return success(); } // Quantized multiplication may need to rescale inputs. return rewriter.notifyMatchFailure( op, "Only floating-point or integer datatype " "legalization currently supported"); } }; template class ConvertAtenDivOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Value lhs = adaptor.getSelf(); auto lhsTy = lhs.getType().dyn_cast(); Value rhs = adaptor.getOther(); auto rhsTy = rhs.getType().dyn_cast(); if (!lhsTy) return rewriter.notifyMatchFailure(op, "Only Tensor types supported in TOSA"); auto lhsElemTy = lhsTy.getElementType(); if (!lhsElemTy.isIntOrFloat()) return rewriter.notifyMatchFailure( op, "Only floating-point or integer datatype legalization supported"); Value rhsAsTensor; if (!rhsTy) { if (failed(torchScalarToTosaTensor(rewriter, op, op.getOther(), rhsAsTensor, lhsElemTy, {}))) return rewriter.notifyMatchFailure( op, "Currently only scalar constants are supported for " "conversion in TOSA operation"); } auto rhsTensor = rhsTy ? rhs : rhsAsTensor; auto outType = OpConversionPattern::getTypeConverter() ->convertType(op.getType()) .template cast(); // auto result; Value result; if (outType.getElementType().template isa()) { // The input to the reciprocal is an integer sometimes, and we may need to // promote it to a floating point. Per TOSA specification, the input types // can only be floating point for tosa::ReciprocalOp. Value rhsCasted = tosa::promoteType(rewriter, rhsTensor, outType); auto rcpOp = rewriter.create( op->getLoc(), rhsCasted.getType(), rhsCasted); result = tosa::createMulOpAndCast(rewriter, op, outType, lhs, rcpOp.getResult(), /*shift=*/0) .getResult(); } else { // The output type can be different than the input types (e.g. dividing an // int tensor results in a floating point tensor). result = tosa::createBinaryOpAndCast(rewriter, op, outType, lhs, rhsTensor) .getResult(); } rewriter.replaceOp(op, {result}); return success(); } }; // This defines a template to construct ops whose legalizations are // specialized. template class ConvertAtenOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override; }; template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenTanhOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { Value self = adaptor.getSelf(); auto selfTy = self.getType().cast(); if (selfTy && selfTy.getElementType().isa()) { rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(op.getType()), self); return success(); } // Sigmoid legalization in TOSA for quantized element-type uses specialized // tosa.table construct. return rewriter.notifyMatchFailure( op, "Only floating-point datatype legalization currently supported"); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenSigmoidOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { Value self = adaptor.getSelf(); auto selfTy = self.getType().cast(); if (selfTy && selfTy.getElementType().isa()) { rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(op.getType()), self); return success(); } // Sigmoid legalization in TOSA for quantized element-type uses // specialized tosa.table construct. return rewriter.notifyMatchFailure( op, "Only floating-point datatype legalization currently supported"); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenReluOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { Value self = adaptor.getSelf(); auto selfTy = self.getType().cast(); // Maps to tosa.clamp which has both int and fp limits. int64_t clampMin = 0; Value clampIn = self; if (!selfTy) { return rewriter.notifyMatchFailure(op, "Only Tensor types supported in TOSA"); } // Rescale the clampIn for quantized types. TBD if (!selfTy.getElementType().isa()) { return rewriter.notifyMatchFailure( op, "Only floating-point datatype legalization currently supported"); } rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(op.getType()), clampIn, rewriter.getI64IntegerAttr(clampMin), rewriter.getI64IntegerAttr(std::numeric_limits::max()), rewriter.getF32FloatAttr(0.0f), rewriter.getF32FloatAttr(std::numeric_limits::max())); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenLeakyReluOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { Value self = adaptor.getSelf(); auto selfTy = self.getType().cast(); if (!selfTy.getElementType().isa()) { return rewriter.notifyMatchFailure( op, "Only floating-point datatype legalization currently supported"); } Value alphaScalar = op.getNegativeSlope(); Value alphaTensor; if (failed(torchScalarToTosaTensor(rewriter, op.getOperation(), alphaScalar, alphaTensor, selfTy.getElementType(), {}))) return rewriter.notifyMatchFailure( op, "Negative slope needs to be a scalar constant for conversion to " "TOSA LeakyReLU operation"); auto zero = tosa::getConstTensor(rewriter, op, 0, {}, selfTy.getElementType()) .value(); auto cond = rewriter.create( op->getLoc(), RankedTensorType::get(selfTy.getShape(), rewriter.getIntegerType(1)), self, zero); auto mulTensor = rewriter.create( op->getLoc(), getTypeConverter()->convertType(op.getType()), self, alphaTensor, /*shift=*/0); rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(op.getType()), cond, self, mulTensor); return success(); } using ReductionConvFunc = std::optional (*)(PatternRewriter &, Operation *, RankedTensorType, Value, ElementsAttr, bool); // They all constitute a common form invoking the appropriate // converion function in TosaLegalizeCommon.cpp template class ConvertAtenReductionOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; using OpAdaptor = typename AtenOpT::Adaptor; // Each variant must implement corresponding parameter parsing options virtual LogicalResult readReduceDimsAndKeepDims( AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, ElementsAttr &reduceDimsAttr, bool &keepDims) const { return rewriter.notifyMatchFailure( op, "Unimplemented reduce_dims and keep_dims parsing function"); } // Common rewriter for all reduction ops, calls the specific implementation of // readReduceDimsAndKeepDims() needed for the op variant. LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Value self = adaptor.getSelf(); auto selfTy = self.getType().cast(); if (!selfTy) return rewriter.notifyMatchFailure(op, "Only Tensor types supported in TOSA"); auto outputTy = OpConversionPattern::getTypeConverter() ->convertType(op.getType()) .template cast(); if (!outputTy) return rewriter.notifyMatchFailure( op, "Only ranked tensor type outputs permitted for reduce_mean"); ElementsAttr reduceDimsAttr; bool keepDims; if (failed(readReduceDimsAndKeepDims(op, adaptor, rewriter, reduceDimsAttr, keepDims))) return failure(); std::optional result = ConversionFuncT(rewriter, op, outputTy, self, reduceDimsAttr, keepDims); if (!result) return failure(); // TBD - support dtype casting. rewriter.replaceOp(op, {result.value()}); return success(); } }; // This reduction op legalization template handles op variants that have // explicit reduce_dims dimensions (provided as a list) and keep_dims // parameters. template class ConvertAtenMultipleDimsReductionOp : public ConvertAtenReductionOp { using ConvertAtenReductionOp::ConvertAtenReductionOp; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult readReduceDimsAndKeepDims(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, ElementsAttr &reduceDimsAttr, bool &keepDims) const override { SmallVector reduceDims; if (!matchPattern(op.getDim(), m_TorchListOfConstantInts(reduceDims))) return rewriter.notifyMatchFailure(op, "non-const dim parameter unsupported"); int64_t N = reduceDims.size(); int64_t inputRank = adaptor.getSelf().getType().template cast().getRank(); for (unsigned i = 0; i < N; i++) { reduceDims[i] = toPositiveDim(reduceDims[i], inputRank); if (!isValidDim(reduceDims[i], inputRank)) return rewriter.notifyMatchFailure(op, "reduce dim is statically invalid"); } auto reduceDimsType = RankedTensorType::get({N}, rewriter.getI64Type()); reduceDimsAttr = DenseIntElementsAttr::get(reduceDimsType, llvm::ArrayRef(reduceDims)); keepDims = false; if (!matchPattern(op.getKeepdim(), m_TorchConstantBool(&keepDims))) return rewriter.notifyMatchFailure( op, "non-const keepdim parameter unsupported"); return success(); } }; // This reduction op legalization template handles op variants that reduce in // only one explicit dim which is provided as a number (rather than a list), and // a keep_dims parameter. template class ConvertAtenOneDimReductionOp : public ConvertAtenReductionOp { using ConvertAtenReductionOp::ConvertAtenReductionOp; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult readReduceDimsAndKeepDims(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, ElementsAttr &reduceDimsAttr, bool &keepDims) const override { int64_t reduceDim; if (!matchPattern(op.getDim(), m_TorchConstantInt(&reduceDim))) return rewriter.notifyMatchFailure(op, "non-const dim parameter unsupported"); int64_t inputRank = adaptor.getSelf().getType().template cast().getRank(); reduceDim = toPositiveDim(reduceDim, inputRank); if (!isValidDim(reduceDim, inputRank)) return rewriter.notifyMatchFailure(op, "dim is statically invalid"); auto reduceDimsType = RankedTensorType::get({1}, rewriter.getI64Type()); reduceDimsAttr = DenseIntElementsAttr::get(reduceDimsType, llvm::ArrayRef({reduceDim})); keepDims = false; if (!matchPattern(op.getKeepdim(), m_TorchConstantBool(&keepDims))) return rewriter.notifyMatchFailure( op, "non-const keepdim parameter unsupported"); return success(); } }; // This reduction op legalization template handles op variants that reduce all // dims does not keep dims. template class ConvertAtenAllDimsReductionOp : public ConvertAtenReductionOp { public: using ConvertAtenReductionOp::ConvertAtenReductionOp; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult readReduceDimsAndKeepDims(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, ElementsAttr &reduceDimsAttr, bool &keepDims) const override { auto self = adaptor.getSelf(); auto selfTy = self.getType().template cast(); // Select all dims to reduce SmallVector reduceDims; for (int64_t i = 0; i < selfTy.getRank(); i++) reduceDims.push_back(i); int64_t N = selfTy.getRank(); auto reduceDimsType = RankedTensorType::get({N}, rewriter.getI64Type()); reduceDimsAttr = DenseIntElementsAttr::get(reduceDimsType, llvm::ArrayRef(reduceDims)); keepDims = false; return success(); } }; template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenArgmaxOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { Value self = adaptor.getSelf(); auto selfTy = self.getType().template cast(); if (!selfTy) return rewriter.notifyMatchFailure( op, "Only ranked tensor types supported in TOSA argmax"); int64_t reduceDim; if (!matchPattern(op.getDim(), m_TorchConstantInt(&reduceDim))) { // NoneType indicates reduce on all dims reduceDim = -1; } else { int64_t inputRank = selfTy.getRank(); reduceDim = toPositiveDim(reduceDim, inputRank); if (!isValidDim(reduceDim, inputRank)) return rewriter.notifyMatchFailure(op, "reduce dim is statically invalid"); } bool keepDim = false; if (!matchPattern(op.getKeepdim(), m_TorchConstantBool(&keepDim))) return rewriter.notifyMatchFailure( op, "non-const keepdim parameter unsupported"); auto resultTy = getTypeConverter() ->convertType(op.getResult().getType()) .cast(); auto outputETy = resultTy.getElementType(); // Create a single instance of tosa.argmax. // Multiple dims require chained construct. auto buildArgmax = [&](int64_t reduceDim, Value input) -> Value { auto inputTy = input.getType().cast(); auto inputShape = makeShapeTorchCompatible(inputTy.getShape()); SmallVector outputShapeArr = {}; int32_t i = 0; for (auto &dim : inputShape) { if (i++ != reduceDim) { outputShapeArr.push_back(dim); } else { if (keepDim) outputShapeArr.push_back(1); } } // Tosa argmax output is i32, while Torch backend mandates i64. auto outputReduceTy = RankedTensorType::get( makeShapeLLVMCompatible(ArrayRef(outputShapeArr)), rewriter.getI32Type()); auto reduceDimAttr = rewriter.getIntegerAttr(rewriter.getI64Type(), reduceDim); return rewriter .create(op->getLoc(), getTypeConverter()->convertType(outputReduceTy), input, reduceDimAttr) .getResult(); }; // Convert the final index to i64 for backend finalization, However, i64 // is not a defined type for tosa.cast, so using arith.extsi instead. auto castToInt64 = [&](Value result) -> LogicalResult { auto resTy = result.getType().cast(); if (!resTy) return rewriter.notifyMatchFailure(op, "Argmax: Result is not a shaped type"); auto resShape = makeShapeTorchCompatible(resTy.getShape()); auto outTy = RankedTensorType::get(makeShapeLLVMCompatible(resShape), outputETy); rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(outTy), result); return success(); }; if (reduceDim == -1) { // reducing on all dims Value input = self; for (int dim = 0; dim < selfTy.getRank(); dim++) { // progressively reduce each 0-th dim input = buildArgmax(0, input); } return castToInt64(input); } else { return castToInt64(buildArgmax(reduceDim, self)); } return success(); } template class ConvertAtenSqueezeOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; using OpAdaptor = typename AtenOpT::Adaptor; // Each variant must implement corresponding parameter parsing options virtual LogicalResult generateSqueezedShape(AtenOpT op, RankedTensorType selfTy, ConversionPatternRewriter &rewriter, SmallVector &squeezedShape) const { return rewriter.notifyMatchFailure( op, "Unimplemented dim/dim-list parsing function"); } // Common rewriter for all squeeze ops, calls the specific implementation of // generateSqueezedShape() needed for the op variant. LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Value self = adaptor.getSelf(); auto selfTy = self.getType().template cast(); if (!selfTy) return rewriter.notifyMatchFailure( op, "Only ranked tensor types supported in TOSA argmax"); SmallVector newOutputShape; if (failed(generateSqueezedShape(op, selfTy, rewriter, newOutputShape))) return rewriter.notifyMatchFailure(op, "Squeeze could not compute new shape"); auto resultTy = OpConversionPattern::getTypeConverter() ->convertType(op.getResult().getType()) .template cast(); auto resultElemTy = resultTy.getElementType(); auto newOutputTy = RankedTensorType::get( makeShapeLLVMCompatible(newOutputShape), resultElemTy); auto reshapeOp = rewriter.create( op->getLoc(), OpConversionPattern::getTypeConverter()->convertType( newOutputTy), self, rewriter.getDenseI64ArrayAttr(newOutputShape)); rewriter.replaceOpWithNewOp( op, OpConversionPattern::getTypeConverter()->convertType( newOutputTy), reshapeOp); return success(); } }; template class ConvertAtenSqueezeOneDimOp : public ConvertAtenSqueezeOp { using ConvertAtenSqueezeOp::ConvertAtenSqueezeOp; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult generateSqueezedShape(AtenOpT op, RankedTensorType selfTy, ConversionPatternRewriter &rewriter, SmallVector &squeezedShape) const override { int64_t squeezeDim; if (!matchPattern(op.getDim(), m_TorchConstantInt(&squeezeDim))) return rewriter.notifyMatchFailure(op, "non-const dim parameter unsupported"); // Handle negative dim if (squeezeDim < 0) squeezeDim = squeezeDim + selfTy.getRank(); auto selfShape = makeShapeTorchCompatible(selfTy.getShape()); // Only dims statically known to have size=1 are reduced. // Dynamic dims are treated as unknowns and will not be squeezed // even if dim parameter says it should be. uint32_t dimNum = 0; for (auto &dim : selfShape) { if (dim != 1 || squeezeDim != dimNum) squeezedShape.push_back(dim); dimNum++; } return success(); } }; template class ConvertAtenSqueezeAllDimsOp : public ConvertAtenSqueezeOp { using ConvertAtenSqueezeOp::ConvertAtenSqueezeOp; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult generateSqueezedShape(AtenOpT op, RankedTensorType selfTy, ConversionPatternRewriter &rewriter, SmallVector &squeezedShape) const override { auto selfShape = makeShapeTorchCompatible(selfTy.getShape()); // Dims that may dynamically resolve to 1 are not reduced here. Only // compile-time resolvable dims are handled here. for (auto &dim : selfShape) { if (dim != 1) squeezedShape.push_back(dim); } return success(); } }; template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenPowTensorScalarOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { Value self = adaptor.getSelf(); auto selfTy = self.getType().template cast(); if (!selfTy) return rewriter.notifyMatchFailure( op, "Only ranked tensor types supported in TOSA Pow"); if (!selfTy.getElementType().isa()) return rewriter.notifyMatchFailure( op, "Only floating-point datatype legalization supported"); auto outType = getTypeConverter()->convertType(op.getType()).template cast(); Value expTensor; Value expScalar = op.getExponent(); if (failed(torchScalarToTosaTensor(rewriter, op, expScalar, expTensor, outType.getElementType(), {}))) return rewriter.notifyMatchFailure( op, "Currently only scalar constants are supported for " "conversion in TOSA Pow operation"); auto powOp = tosa::createBinaryOpAndCast(rewriter, op, outType, self, expTensor); rewriter.replaceOp(op, powOp.getResult()); return success(); } // Perform the basic n-dim matmul operation encompassing the handling of // broadcasting and dynamic shape propagation. // All PyTorch ops that leverage matrix multiplication will derive this and // implement their specialized input processing (e.g transpose), and output // processing, e.g. GEMM or fully connected bias handling. template class ConvertAtenMatmulBaseOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; using OpAdaptor = typename AtenOpT::Adaptor; // Each variant must implement corresponding parameter parsing options. // Maintain separate input read functions for each variant because it is not // necessarily true with all variants that the first two operands are the lhs // and rhs. virtual LogicalResult readMatMulInputs(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, Value &lhs, Value &rhs) const { return rewriter.notifyMatchFailure( op, "Unimplemented matrix multiplication variant input parsing function"); } LogicalResult performMatmul(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, Value &lhs, Value &rhs, Value &output) const { auto lhsTy = lhs.getType().cast(); auto rhsTy = rhs.getType().cast(); auto lhsRank = lhsTy.getRank(); auto rhsRank = rhsTy.getRank(); auto lhsShape = makeShapeTorchCompatible(lhsTy.getShape()); auto rhsShape = makeShapeTorchCompatible(rhsTy.getShape()); auto lhsElemTy = lhsTy.getElementType(); auto rhsElemTy = rhsTy.getElementType(); if (lhsElemTy != rhsElemTy) return rewriter.notifyMatchFailure(op, "Matmul: input datatypes mismatched"); // Legalization constructs may offer input shapes but expect output shapes // to be inferred, e.g. // func @forward(%arg0: !torch.vtensor<[14,19],f32>, // %arg1: !torch.vtensor<[19,28],f32>) -> // !torch.vtensor<[?,?],f32> // This is tricky with matmul, since TOSA matmul is on 3D inputs. // This means the need to reshape potentially both inputs and outputs, // and reshape to unknown shape is undefined. auto maxInputRank = lhsRank > rhsRank ? lhsRank : rhsRank; // If performing dot product on vectors, the RHS is synthetically transposed if (maxInputRank == 1) maxInputRank++; // Obtaining the rank broadcasted shapes of tensors makes it easier to // construct the input and output reshaping logic. auto getRankBroadcastedShape = [&](Value tensor, bool isRHS) -> SmallVector { auto tensorTy = tensor.getType().cast(); auto tensorShape = makeShapeTorchCompatible(tensorTy.getShape()); auto tensorRank = tensorTy.getRank(); SmallVector bcastedShape; auto bcastDims = maxInputRank - tensorRank; if (isRHS && (tensorRank == 1) && bcastDims) { // RHS with rank1 is special. It be synthetically transposed to dim[:-2] for (int32_t i = 0; i < bcastDims - 1; i++) bcastedShape.push_back(1); bcastedShape.push_back(tensorShape[0]); bcastedShape.push_back(1); } else { if (bcastDims > 0) { // rank broadcast for (uint32_t i = 0; i < bcastDims; i++) bcastedShape.push_back(1); } for (auto &dim : tensorShape) bcastedShape.push_back(dim); } return bcastedShape; }; // Step: Rank broadcast the two inputs. auto lhsBroadcastedShape = getRankBroadcastedShape(lhs, false); auto lhsBroadcastedTy = RankedTensorType::get( makeShapeLLVMCompatible(lhsBroadcastedShape), lhsElemTy); auto rhsBroadcastedShape = getRankBroadcastedShape(rhs, true); auto rhsBroadcastedTy = RankedTensorType::get( makeShapeLLVMCompatible(rhsBroadcastedShape), rhsElemTy); auto rankBroadcastedLhs = lhsRank == maxInputRank ? lhs : rewriter.create( op->getLoc(), OpConversionPattern::getTypeConverter()->convertType( lhsBroadcastedTy), lhs, rewriter.getDenseI64ArrayAttr(lhsBroadcastedShape)); auto rankBroadcastedRhs = rhsRank == maxInputRank ? rhs : rewriter.create( op->getLoc(), OpConversionPattern::getTypeConverter()->convertType( rhsBroadcastedTy), rhs, rewriter.getDenseI64ArrayAttr(rhsBroadcastedShape)); // TOSA matmul is performed on two 3D inputs and generates a 3D output. // Lower ranked tensors are dim-1 reshaped up to 3D auto reshapeUpTo3DTensor = [&](Value tensor) -> Value { auto tensorTy = tensor.getType().cast(); auto rank = tensorTy.getRank(); assert(rank <= 3 && "reshapeUpTo3D tensor must receive rank <= 3"); if (rank == 3) return tensor; auto shape = makeShapeTorchCompatible(tensorTy.getShape()); SmallVector newShape({1, 1, 1}); if (rank == 2) { // batchsize = 1 newShape[1] = shape[0]; newShape[2] = shape[1]; } else { // rank 1 newShape[2] = shape[0]; } auto newType = RankedTensorType::get(makeShapeLLVMCompatible(newShape), tensorTy.getElementType()); return rewriter.create( op->getLoc(), OpConversionPattern::getTypeConverter()->convertType( newType), tensor, rewriter.getDenseI64ArrayAttr(newShape)); }; // Where broadcasting is required in one or more batch dims, the following // is done. // Where all batch dims are involved in broadcasting: // Given A: 3x1x5x6 and B: 1x4x6x7 // 1. Reshape A to 1x15x6 (squeeze all batchdims into dim1) // 2. Transpose B to 6x1x4x7, Reshape to 1x6x28 // 3. tosa.Matmul 1x15x6 1x6x28 = 1x15x28 // 4. Reshape out to 3x5x4x7, Transpose to 3x4x5x7 // Where there are batch dimensions that are broadcast and not, the // treatment is to have dim0 correspond to product of all non-broadcast // dimsizes: // Given A: 4x8x16x32 B: 8x32x17 // 1. Reshape A to 8x64x32 (squeeze all unbroadcasted dims into dim0, // broadcasted dims into dim1) // 2. No transpose or reshape of B as its batchdims are not broadcast to. // 3. tosa.Matmul 8x64x32 8x32x17 = 8x64x17 // 4. Reshape to 8x4x16x17, Transpose to 4x8x16x17 // Check if we need to perform the broadcast on batch dim // Not needed if max rank < 3, or if maxrank == 3 and dim[0] matches auto needsBatchDimBroadcast = [&]() -> bool { if (maxInputRank < 3) { return false; } else { if (maxInputRank == 3 && lhsBroadcastedShape[0] == rhsBroadcastedShape[0]) { return false; } return true; } }; auto performBatchDimBroadcast = needsBatchDimBroadcast(); // Inputs to the tosa.matmul Value matmulLhs, matmulRhs; using TensorShape_t = struct { int64_t dim; int64_t shape; }; // Transpose needs to done if transposeDims are not non-monotonically // increasing. E.g. [0, 1, 2, 3]: No transpose [1, 0, 2, 3]: Transpose dim0 // and dim1 The order need not be sequential, since one or more dims may // have been removed due to broadcasting. auto isTransposeRequired = [](SmallVector transposedDims) -> bool { int32_t lastDim = -1; for (auto &dim : transposedDims) { if (lastDim > dim) return true; lastDim = dim; } return false; }; SmallVector commonElems, lhsSqueezedElems, rhsSqueezedElems; if (!performBatchDimBroadcast) { // Simple with no broadcasting artifacts. Just reshape up to 3D matmulLhs = reshapeUpTo3DTensor(rankBroadcastedLhs); matmulRhs = reshapeUpTo3DTensor(rankBroadcastedRhs); } else { // In this case, either or both input matrices involve broadcasting on // their batch dimensions. For example: // 4x5x6, 1x6x7 -> 4x5x7 // 4x1x5x6, 1x3x6x7 -> 4x3x5x7 // Though maxInputRank is necessarily >=3 here, individual matrices may be // lower rank. // E.g. 3x4x5x6, 6 -> 3x4x5 // These are the accumulated products of the shape of each dim: // 1. common dimensions: upper dimensions (dims other than two rightmost) // whose shapes are the same for both LHS and RHS. // 2. LHS squeezed dimensions: all dimensions of LHS that involve // broadcasting in either direction, plus the LHS[-2] shape // 3. RHS squeezed dimensions: all dimensions of RHS that involve // broadcasting in either direction, plus the RHS[-1] shape int64_t commonValue = 1, lhsSqueezedValue = 1, rhsSqueezedValue = 1; // For both LHS and RHS, the dimensions are separated into the common, // squeezed and remaining dim. E.g. given // LHS = 3x4x5x6 // RHS = 1x4x6x7 // common = {{dim=1, shape=4}} // lhs squeezed = {{dim=0, shape=3}, // {dim=2, shape=5}} // rhs squeezed = {{dim=0, shape=1}, // {dim=2, shape=7}} // The matmul dim is LHS[-1] and RHS[-2], i.e. 6. // Once this is obtained, LHS and RHS are expressed as: // LHS = {common, lhs_squeezed, matmul_dim} // RHS = {common, matmul_dim, rhs_squeezed} // The matmul is then performed to obtain output: // matmul_out = {common, lhs_squeezed, rhs_squeezed} // Finally, we reshape to 'unsqueeze' the LHS and RHS parts and transpose // them back to their correct positions. SmallVector transposedLhsShape; SmallVector transposedLhsDims; // Step: generate the common dim/shape information bool hasDynamicDims = false; for (uint32_t dim = 0; dim < maxInputRank - 2; dim++) { bool isDynamicDim = ShapedType::isDynamic(lhsBroadcastedShape[dim]); hasDynamicDims |= isDynamicDim; if (isDynamicDim || lhsBroadcastedShape[dim] == rhsBroadcastedShape[dim]) { commonValue *= lhsBroadcastedShape[dim]; commonElems.push_back({dim, lhsBroadcastedShape[dim]}); } } commonValue = commonValue < 0 ? kUnknownSize : commonValue; // TODO: Handle the case when there are dynamic batch dimensions. if (hasDynamicDims) commonValue = kUnknownSize; // Step: generate the LHS squeezed dim/shape information. for (uint32_t dim = 0; dim < maxInputRank - 2; dim++) { bool isDynamicDim = ShapedType::isDynamic(lhsBroadcastedShape[dim]); if (!isDynamicDim && lhsBroadcastedShape[dim] != rhsBroadcastedShape[dim]) { lhsSqueezedValue *= lhsBroadcastedShape[dim]; lhsSqueezedElems.push_back({dim, lhsBroadcastedShape[dim]}); } } // including LHS[-2] lhsSqueezedElems.push_back( {maxInputRank - 2, lhsBroadcastedShape[maxInputRank - 2]}); lhsSqueezedValue *= lhsBroadcastedShape[maxInputRank - 2]; lhsSqueezedValue = lhsSqueezedValue < 0 ? kUnknownSize : lhsSqueezedValue; // Step: Create the tosa.transpose array. If this array has a // non-monotonic series of dims, perform transpose. // First the common_elems for (uint32_t i = 0; i < commonElems.size(); i++) { transposedLhsShape.push_back(commonElems[i].shape); transposedLhsDims.push_back(commonElems[i].dim); } // then the lhs_squeezed elems for (uint32_t i = 0; i < lhsSqueezedElems.size(); i++) { transposedLhsShape.push_back(lhsSqueezedElems[i].shape); transposedLhsDims.push_back(lhsSqueezedElems[i].dim); } // then the final dim transposedLhsDims.push_back(maxInputRank - 1); transposedLhsShape.push_back(lhsBroadcastedShape[maxInputRank - 1]); bool lhsNeedsTranspose = isTransposeRequired(transposedLhsDims); auto lhsReshapeInput = rankBroadcastedLhs; if (lhsNeedsTranspose) { auto transposedLhsType = RankedTensorType::get( makeShapeLLVMCompatible(transposedLhsShape), rhsElemTy); std::optional transposedLhsDimsConst = tosa::getConstTensor( rewriter, op, /*vec=*/transposedLhsDims, /*shape=*/{static_cast(transposedLhsDims.size())}); lhsReshapeInput = rewriter .create( op->getLoc(), OpConversionPattern::getTypeConverter() ->convertType(transposedLhsType), rankBroadcastedLhs, transposedLhsDimsConst.value()) .getResult(); } // LHS = {common, lhs_squeezed, matmul_dim} SmallVector newLhsShape( {1, 1, lhsBroadcastedShape[maxInputRank - 1]}); newLhsShape[0] = commonValue; newLhsShape[1] = hasDynamicDims ? kUnknownSize : lhsSqueezedValue; auto newLhsType = RankedTensorType::get( makeShapeLLVMCompatible(newLhsShape), lhsElemTy); matmulLhs = rewriter.create( op->getLoc(), OpConversionPattern::getTypeConverter()->convertType( newLhsType), lhsReshapeInput, rewriter.getDenseI64ArrayAttr(newLhsShape)); SmallVector transposedRhsShape; SmallVector transposedRhsDims; // Step: Create the RHS transpose sequence // RHS = {common, matmul_dim, rhs_squeezed} // first the common_dims for (uint32_t i = 0; i < commonElems.size(); i++) { transposedRhsShape.push_back(commonElems[i].shape); transposedRhsDims.push_back(commonElems[i].dim); } // The matmul_dim of RHS transposedRhsDims.push_back(maxInputRank - 2); transposedRhsShape.push_back(rhsBroadcastedShape[maxInputRank - 2]); // finally all the rhs_squeeze dims hasDynamicDims = false; for (uint32_t dim = 0; dim < maxInputRank - 2; dim++) { bool isDynamicDim = ShapedType::isDynamic(rhsBroadcastedShape[dim]); hasDynamicDims |= isDynamicDim; if (!isDynamicDim && rhsBroadcastedShape[dim] != lhsBroadcastedShape[dim]) { rhsSqueezedElems.push_back({dim, rhsBroadcastedShape[dim]}); rhsSqueezedValue *= rhsBroadcastedShape[dim]; } } rhsSqueezedElems.push_back( {maxInputRank - 1, rhsBroadcastedShape[maxInputRank - 1]}); rhsSqueezedValue *= rhsBroadcastedShape[maxInputRank - 1]; for (uint32_t i = 0; i < rhsSqueezedElems.size(); i++) { transposedRhsShape.push_back(rhsSqueezedElems[i].shape); transposedRhsDims.push_back(rhsSqueezedElems[i].dim); } auto transposedRhsType = RankedTensorType::get( makeShapeLLVMCompatible(transposedRhsShape), rhsElemTy); if (hasDynamicDims) rhsSqueezedValue = kUnknownSize; SmallVector newRhsShape( {commonValue < 0 ? kUnknownSize : commonValue, rhsBroadcastedShape[maxInputRank - 2], rhsSqueezedValue}); auto newRhsType = RankedTensorType::get( makeShapeLLVMCompatible(newRhsShape), rhsElemTy); bool rhsNeedsTranspose = isTransposeRequired(transposedRhsDims); auto transposedRhsValue = rankBroadcastedRhs; if (rhsNeedsTranspose) { std::optional transposedRhsDimsConst = tosa::getConstTensor( rewriter, op, /*vec=*/transposedRhsDims, /*shape=*/{static_cast(transposedRhsDims.size())}); transposedRhsValue = rewriter .create( op->getLoc(), OpConversionPattern::getTypeConverter() ->convertType(transposedRhsType), rankBroadcastedRhs, transposedRhsDimsConst.value()) .getResult(); } // reshape matmulRhs = rewriter.create( op->getLoc(), OpConversionPattern::getTypeConverter()->convertType( newRhsType), transposedRhsValue, rewriter.getDenseI64ArrayAttr(newRhsShape)); } auto matmulLhsShape = makeShapeTorchCompatible( matmulLhs.getType().template cast().getShape()); auto matmulRhsShape = makeShapeTorchCompatible( matmulRhs.getType().template cast().getShape()); // The reshape/transpose should ensure the tosa.matmul always has same // batch size for either matrix. If if shapes are dynamic, they'll be // appropriately handled. assert(matmulLhsShape[0] == matmulRhsShape[0] && "tosa.matmul needs same batchsize on LHS and RHS"); SmallVector matmulOutputShape( {matmulLhsShape[0], matmulLhsShape[1], matmulRhsShape[2]}); Type outputElemTy; if (lhsElemTy.isa()) { outputElemTy = lhsElemTy; } else { // qint8 emits i32 matmul output outputElemTy = rewriter.getIntegerType(32); } auto mmOutputTy = RankedTensorType::get( makeShapeLLVMCompatible(matmulOutputShape), outputElemTy); auto mmOpResult = rewriter .create( op->getLoc(), OpConversionPattern::getTypeConverter()->convertType( mmOutputTy), matmulLhs, matmulRhs) .getResult(); // Perform the reshape to output shape. This is always required unless max // input rank=3 and there was no broadcasting, in which case the tosa.matmul // output itself is correctly shaped. bool performOpReshape = !(maxInputRank == 3 && !performBatchDimBroadcast); if (performOpReshape) { // Since the output shape may be unknown, we construct it // independently and reshape. Otherwise reshape may be expressed for // an unknown to-be-inferred output shape. The final tensor.cast // reshapes the known shape to the desired output shape. auto computeOpShape = [&](SmallVector &reshapedOpShape, SmallVector &transposedOpDims, SmallVector &transposedOpShapes) { if (maxInputRank == 1) return; if (maxInputRank == 2) { if (lhsRank == 2) reshapedOpShape.push_back(lhsShape[0]); if (rhsRank == 2) reshapedOpShape.push_back(rhsShape[1]); return; } // Step: Construct the output transpose/reshape information // First the common_dims for (uint32_t i = 0; i < commonElems.size(); i++) { reshapedOpShape.push_back(commonElems[i].shape); transposedOpDims.push_back(commonElems[i].dim); } // Then the LHS squeezed dims for (uint32_t i = 0; i < lhsSqueezedElems.size() - 1; i++) { // Only dims that don't broadcast - broadcasting ones come from the // other input. if (lhsSqueezedElems[i].shape != 1) { reshapedOpShape.push_back(lhsSqueezedElems[i].shape); transposedOpDims.push_back(lhsSqueezedElems[i].dim); } } // The last squeezed dim is lhs[-2] which needs to be // checked separately for broadcasting if (lhsRank > 1) { reshapedOpShape.push_back(lhsBroadcastedShape[maxInputRank - 2]); transposedOpDims.push_back(maxInputRank - 2); } // then the RHS squeezed dims except rhs[-1] which is handled like // lhs[-2] for (uint32_t i = 0; i < rhsSqueezedElems.size() - 1; i++) { if (rhsSqueezedElems[i].shape != 1) { reshapedOpShape.push_back(rhsSqueezedElems[i].shape); transposedOpDims.push_back(rhsSqueezedElems[i].dim); } } // rhs[-1] if (rhsRank > 1) { reshapedOpShape.push_back(rhsBroadcastedShape[maxInputRank - 1]); transposedOpDims.push_back(maxInputRank - 1); } // Final transposed output shape construction for (uint32_t i = 0; i < maxInputRank - 2; i++) { if (lhsBroadcastedTy.isDynamicDim(i)) { transposedOpShapes.push_back(kUnknownSize); } else { if (lhsBroadcastedShape[i] == rhsBroadcastedShape[i]) { transposedOpShapes.push_back(lhsBroadcastedShape[i]); } else { transposedOpShapes.push_back(lhsBroadcastedShape[i] == 1 ? rhsBroadcastedShape[i] : lhsBroadcastedShape[i]); } } } if (lhsRank > 1) transposedOpShapes.push_back(lhsBroadcastedShape[maxInputRank - 2]); if (rhsRank > 1) transposedOpShapes.push_back(rhsBroadcastedShape[maxInputRank - 1]); return; }; SmallVector reshapedOpShape, transposedOpShape; SmallVector transposedOpDims; computeOpShape(reshapedOpShape, transposedOpDims, transposedOpShape); bool opNeedsTranspose = isTransposeRequired(transposedOpDims); // Perform reshape auto reshapedOpType = RankedTensorType::get( makeShapeLLVMCompatible(reshapedOpShape), outputElemTy); auto reshapedOp = rewriter.create( op->getLoc(), OpConversionPattern::getTypeConverter()->convertType( reshapedOpType), mmOpResult, rewriter.getDenseI64ArrayAttr(reshapedOpShape)); if (opNeedsTranspose) { std::optional transposedOpShapeConst = tosa::getConstTensor( rewriter, op, /*vec=*/transposedOpDims, /*shape=*/{static_cast(transposedOpDims.size())}); auto transposedOpType = RankedTensorType::get( makeShapeLLVMCompatible(transposedOpShape), outputElemTy); output = rewriter .create( op->getLoc(), OpConversionPattern::getTypeConverter() ->convertType(transposedOpType), reshapedOp.getResult(), transposedOpShapeConst.value()) .getResult(); } else { output = reshapedOp.getResult(); } } else { output = mmOpResult; } return success(); } // The default version just reads two inputs, computes output and returns it. // Other versions may add a bias, apply GEMM-style alpha/beta scaling etc. virtual LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Value lhs, rhs; if (failed(readMatMulInputs(op, adaptor, rewriter, lhs, rhs))) return rewriter.notifyMatchFailure(op, "Failed to read matmul inputs"); Value output; if (failed(performMatmul(op, adaptor, rewriter, lhs, rhs, output))) return rewriter.notifyMatchFailure(op, "Failed to perform matmul operation"); rewriter.replaceOpWithNewOp( op, OpConversionPattern::getTypeConverter() ->convertType(op.getType()) .template cast(), output); return success(); } }; // Legalizes the torch.matmul op for general n-dim matmul. template class ConvertAtenMatMulOp : public ConvertAtenMatmulBaseOp { public: using ConvertAtenMatmulBaseOp::ConvertAtenMatmulBaseOp; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult readMatMulInputs(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, Value &lhs, Value &rhs) const override { lhs = adaptor.getSelf(); auto lhsTy = lhs.getType().cast(); rhs = adaptor.getOther(); auto rhsTy = rhs.getType().cast(); if (!lhsTy || !rhsTy) return rewriter.notifyMatchFailure( op, "Only ranked tensor types supported in TOSA matmul"); return success(); } }; // Implements handling of aten.mm and aten.bmm ops. template class ConvertAtenMmOp : public ConvertAtenMatmulBaseOp { public: using ConvertAtenMatmulBaseOp::ConvertAtenMatmulBaseOp; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult readMatMulInputs(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, Value &lhs, Value &rhs) const override { lhs = adaptor.getSelf(); auto lhsTy = lhs.getType().cast(); rhs = adaptor.getMat2(); auto rhsTy = rhs.getType().cast(); if (!lhsTy || !rhsTy) return rewriter.notifyMatchFailure( op, "Only ranked tensor types supported in TOSA matmul"); auto lhsRank = lhsTy.getRank(); auto rhsRank = rhsTy.getRank(); if (isa(op)) { // Mm takes two 2D tensors. if (lhsRank != 2 || rhsRank != 2) return op.emitError("aten.mm called but matrix rank != 2"); } else if (isa(op)) { // Bmm takes two 3D tensors. if (lhsRank != 3 || rhsRank != 3) return op.emitError("aten.bmm called but matrix rank != 3"); } return success(); } }; // Implements handling of aten.linear op. template class ConvertAtenLinearOp : public ConvertAtenMatmulBaseOp { public: using ConvertAtenMatmulBaseOp::ConvertAtenMatmulBaseOp; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult readMatMulInputs(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, Value &lhs, Value &rhs) const override { lhs = adaptor.getInput(); auto lhsTy = lhs.getType().cast(); rhs = adaptor.getWeight(); auto rhsTy = rhs.getType().cast(); if (!lhsTy || !rhsTy) return rewriter.notifyMatchFailure( op, "Only ranked tensor types supported in TOSA matmul"); auto lhsRank = lhsTy.getRank(); auto rhsRank = rhsTy.getRank(); if (lhsRank != 2 && lhsRank != 3) return op.emitError("aten.Linear called but input rank not 2 or 3"); if (rhsRank != 2 && rhsRank != 3) return op.emitError("aten.Linear called but weight rank not 2 or 3"); // Protection against crash due to unguarded code in TOSA->LinAlg. // TODO: This should be handled in TOSA->LinAlg instead. if (!lhsTy.hasStaticShape() || !rhsTy.hasStaticShape()) return rewriter.notifyMatchFailure( op, "aten.Linear needs statically shaped input"); return success(); } // Override the default rewriter to perform RHS transpose and bias addition as // well. LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Value lhs, rhs; if (failed(readMatMulInputs(op, adaptor, rewriter, lhs, rhs))) return rewriter.notifyMatchFailure(op, "Failed to read matmul inputs"); // The aten.Linear op has a bias tensor that is added to the matmul output. auto bias = adaptor.getBias(); auto biasTy = bias.getType(); // TOSA does not mandate that elementwise op tensors need to be ranked. if (!biasTy.template isa() && !biasTy.template isa()) return rewriter.notifyMatchFailure( op, "Only tensor types supported in GEMM to TOSA for bias tensor"); // RHS must have its last two dims transposed prior to matrix // multiplication. auto rhsTy = rhs.getType().cast(); auto rhsRank = rhsTy.getRank(); auto rhsShape = makeShapeTorchCompatible(rhsTy.getShape()); auto rhsElemTy = rhsTy.getElementType(); // Create a non-const shape array to transpose dims. SmallVector transposedRhsShape; for (auto &shape : rhsShape) transposedRhsShape.push_back(shape); SmallVector transposedRhsDims; for (int32_t i = 0; i < rhsRank; i++) transposedRhsDims.push_back(i); // Swap the last two dims. std::swap(transposedRhsShape[rhsRank - 1], transposedRhsShape[rhsRank - 2]); std::swap(transposedRhsDims[rhsRank - 1], transposedRhsDims[rhsRank - 2]); std::optional transposedRhsShapeConst = tosa::getConstTensor( rewriter, op, /*vec=*/transposedRhsDims, /*shape=*/{static_cast(transposedRhsDims.size())}); auto transposedRhsType = RankedTensorType::get( makeShapeLLVMCompatible(transposedRhsShape), rhsElemTy); rhs = rewriter.create( op->getLoc(), OpConversionPattern::getTypeConverter()->convertType( transposedRhsType), rhs, transposedRhsShapeConst.value()); Value matmulOutput; if (failed( this->performMatmul(op, adaptor, rewriter, lhs, rhs, matmulOutput))) return rewriter.notifyMatchFailure(op, "Failed to perform matmul operation"); Value matmulPlusBias = matmulOutput; if (!biasTy.template isa()) { // Bias addition broadcasts to the matmul output shape. matmulPlusBias = rewriter .create(op->getLoc(), matmulOutput.getType(), matmulOutput, bias) .getResult(); } rewriter.replaceOpWithNewOp( op, OpConversionPattern::getTypeConverter() ->convertType(op.getType()) .template cast(), matmulPlusBias); return success(); } }; template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenRsubScalarOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { auto self = adaptor.getSelf(); auto otherScalar = op.getOther(); auto alphaScalar = op.getAlpha(); auto selfTy = self.getType().cast(); if (!selfTy) return rewriter.notifyMatchFailure( op, "Only ranked tensor types supported in TOSA Rsub"); if (!selfTy.getElementType().isa()) return rewriter.notifyMatchFailure( op, "Only floating-point datatype legalization supported"); Value otherTensor, alphaTensor; if (failed(torchScalarToTosaTensor(rewriter, op, otherScalar, otherTensor, selfTy.getElementType(), {}))) return rewriter.notifyMatchFailure( op, "Currently only scalar constants are supported for " "conversion in TOSA Rsub operation"); if (failed(torchAlphaToTosaTensor(rewriter, op.getOperation(), alphaScalar, alphaTensor, selfTy.getElementType(), /*checkForUnity=*/true))) return failure(); auto multTensor = rewriter.create( op->getLoc(), getTypeConverter()->convertType(op.getType()), self, alphaTensor, /*shift=*/0); rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(op.getType()), otherTensor, multTensor); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenConvolutionOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { auto input = adaptor.getInput(); auto weight = adaptor.getWeight(); auto inputTy = input.getType().cast(); auto weightTy = weight.getType().cast(); auto outputTy = getTypeConverter() ->convertType(op.getType()) .template cast(); if (!inputTy || !weightTy || !outputTy) return rewriter.notifyMatchFailure( op, "Input, weight and output to Convolution must be ranked tensors"); auto inputElemTy = inputTy.getElementType(); auto weightElemTy = weightTy.getElementType(); auto inputShape = makeShapeTorchCompatible(inputTy.getShape()); auto weightShape = makeShapeTorchCompatible(weightTy.getShape()); if (inputTy.getRank() != 4) return rewriter.notifyMatchFailure( op, "Unimplemented: only 2D convolutions supported"); if (!weightTy.hasStaticShape()) return rewriter.notifyMatchFailure( op, "Unimplemented: TOSA only supports static weight"); // Bias is optional. TOSA mandates a zero tensor here, so construct one if // required. auto bias = adaptor.getBias(); if (adaptor.getBias().getType().template isa()) { // TBD: This is only valid for quantized 8-bit. For 16-bit, the bias (and // accumulator) are 48-bit and not 32-bit, and requires the use of APInt to // define a 48-bit int. if (inputElemTy.isa()) { SmallVector zeroVec(weightShape[0], 0); bias = tosa::getConstTensor( rewriter, op, zeroVec, {static_cast(weightShape[0])}) .value(); } else { SmallVector zeroVec(weightShape[0], 0); bias = tosa::getConstTensor(rewriter, op, zeroVec, {static_cast(weightShape[0])}) .value(); } } else { if (!bias.getType().cast()) return rewriter.notifyMatchFailure( op, "Bias provided but not a ranked tensor"); } auto biasElemTy = inputElemTy.isa() ? inputElemTy : rewriter.getI32Type(); int64_t groups; if (!matchPattern(op.getGroups(), m_TorchConstantInt(&groups))) { return rewriter.notifyMatchFailure(op, "non-const group size unsupported"); } else if (groups != 1 && weightShape[1] != 1) { return rewriter.notifyMatchFailure( op, "group size must be 1 (convolution) or weight.dim(1) must be 1 " "(depthwise convolution)"); } SmallVector stride; if (!matchPattern(adaptor.getStride(), m_TorchListOfConstantInts(stride))) return rewriter.notifyMatchFailure(op, "non-const stride list unsupported"); SmallVector padding_2d; if (!matchPattern(adaptor.getPadding(), m_TorchListOfConstantInts(padding_2d))) return rewriter.notifyMatchFailure(op, "non-const padding list unsupported"); // TOSA uses 4D padding {t, b, l, r} while Torch defines 2D padding {t, l}. // The Torch OFM computation uses 2*pad in each spatial direction, implying // the same t=b and l=r values for TOSA. SmallVector padding( {padding_2d[0], padding_2d[0], padding_2d[1], padding_2d[1]}); SmallVector dilation; if (!matchPattern(adaptor.getDilation(), m_TorchListOfConstantInts(dilation))) return rewriter.notifyMatchFailure(op, "non-const dilation list unsupported"); // TOSA works in NHWC and takes OHWI (conv) / HWIM (depthwise conv) weights. // Perform the necessary transformations. std::optional nchwToNhwcTransposeConst = tosa::getConstTensor(rewriter, op, /*vec=*/{0, 2, 3, 1}, /*shape=*/{static_cast(4)}); SmallVector transposedInputShape( {inputShape[0], inputShape[2], inputShape[3], inputShape[1]}); auto transposedInputType = RankedTensorType::get( makeShapeLLVMCompatible(transposedInputShape), inputElemTy); auto transposedInput = rewriter .create( op->getLoc(), getTypeConverter()->convertType(transposedInputType), input, nchwToNhwcTransposeConst.value()) .getResult(); SmallVector transformedWeightShape; RankedTensorType transformedWeightType; Value transformedWeight; int64_t outputCDim; if (groups == 1) { // full convolution: O(I/G)HW-> OHWI transformedWeightShape = {weightShape[0], weightShape[2], weightShape[3], weightShape[1]}; transformedWeightType = RankedTensorType::get( makeShapeLLVMCompatible(transformedWeightShape), weightElemTy); transformedWeight = rewriter .create( op->getLoc(), getTypeConverter()->convertType(transformedWeightType), weight, nchwToNhwcTransposeConst.value()) .getResult(); outputCDim = transformedWeightShape[0]; } else if (weightShape[1] == 1) { // depthwise convolution: O(I/G)HW-> HWIM) // transpose: O(I/G)HW -> HWO(I/G) std::optional transposeConst = tosa::getConstTensor(rewriter, op, /*vec=*/{2, 3, 0, 1}, /*shape=*/{static_cast(4)}); SmallVector transposedWeightShape = { weightShape[2], weightShape[3], weightShape[0], weightShape[1]}; auto transposedWeightType = RankedTensorType::get( makeShapeLLVMCompatible(transposedWeightShape), weightElemTy); auto transposedWeight = rewriter .create( op->getLoc(), getTypeConverter()->convertType(transposedWeightType), weight, transposeConst.value()) .getResult(); // reshape: HWO(I/G) -> HWIM outputCDim = makeShapeTorchCompatible(outputTy.getShape())[1]; if (outputCDim == kUnknownSize) { return rewriter.notifyMatchFailure( op, "number of output channels must be statically known for " "depthwise convolutions"); } transformedWeightShape = { transposedWeightShape[0], transposedWeightShape[1], groups, outputCDim / groups, }; transformedWeightType = RankedTensorType::get( makeShapeLLVMCompatible(transformedWeightShape), weightElemTy); transformedWeight = rewriter .create( op->getLoc(), getTypeConverter()->convertType(transformedWeightType), transposedWeight, rewriter.getDenseI64ArrayAttr(transformedWeightShape)) .getResult(); } else { llvm_unreachable("Unhandled convolution type"); } int64_t outputHDim, outputWDim; if (inputTy.hasStaticShape()) { int64_t inputHDim = inputShape[2]; int64_t inputWDim = inputShape[3]; int64_t weightHDim = weightShape[2]; int64_t weightWDim = weightShape[3]; outputHDim = (inputHDim + padding[0] + padding[1] - dilation[0] * (weightHDim - 1) - 1) / stride[0] + 1; outputWDim = (inputWDim + padding[2] + padding[3] - dilation[1] * (weightWDim - 1) - 1) / stride[1] + 1; } else { outputHDim = kUnknownSize; outputWDim = kUnknownSize; } // Output shape is NHWC, to be transposed back to NCHW. Output elemTy for // quantized input is i32, which gets rescaled down to quantized output range. SmallVector outputShape = {transposedInputShape[0], outputHDim, outputWDim, outputCDim}; auto convOpTy = RankedTensorType::get(makeShapeLLVMCompatible(outputShape), biasElemTy); Value convOpResult; if (groups == 1) { // full convolution convOpResult = rewriter .create(op->getLoc(), getTypeConverter()->convertType(convOpTy), transposedInput, transformedWeight, bias, rewriter.getDenseI64ArrayAttr(padding), rewriter.getDenseI64ArrayAttr(stride), rewriter.getDenseI64ArrayAttr(dilation)) .getResult(); } else if (weightShape[1] == 1) { // depthwise convolution convOpResult = rewriter .create( op->getLoc(), getTypeConverter()->convertType(convOpTy), transposedInput, transformedWeight, bias, rewriter.getDenseI64ArrayAttr(padding), rewriter.getDenseI64ArrayAttr(stride), rewriter.getDenseI64ArrayAttr(dilation)) .getResult(); } else { llvm_unreachable("Unhandled convolution type"); } std::optional nhwcToNchwTransposeConst = tosa::getConstTensor(rewriter, op, /*vec=*/{0, 3, 1, 2}, /*shape=*/{static_cast(4)}); SmallVector transposedOutputShape( {outputShape[0], outputShape[3], outputShape[1], outputShape[2]}); auto transposedOutputType = RankedTensorType::get( makeShapeLLVMCompatible(transposedOutputShape), biasElemTy); auto transposedOutput = rewriter .create( op->getLoc(), getTypeConverter()->convertType(transposedOutputType), convOpResult, nhwcToNchwTransposeConst.value()) .getResult(); Value rescaledResult = transposedOutput; if (inputElemTy.isa()) { rescaledResult = tosa::buildRescaleOpConvOutput( rewriter, op, transposedOutput, inputTy, weightTy, outputTy); } rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(op.getType()), rescaledResult); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenReshapeOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { auto self = adaptor.getSelf(); auto selfTy = self.getType().cast(); if (!selfTy) return rewriter.notifyMatchFailure( op, "Only ranked tensor types supported in TOSA Reshape"); // Check that at most one dimension is -1 SmallVector newShape; if (!matchPattern(op.getShape(), m_TorchListOfConstantInts(newShape))) return rewriter.notifyMatchFailure( op, "Only constant shape supported in TOSA Reshape"); int auto_sz = 0; for (auto s : newShape) auto_sz += (s == -1 ? 1 : 0); if (auto_sz > 1) return rewriter.notifyMatchFailure( op, "At most one dimension may be specified as -1 to " "automatically calculate its size"); auto newType = RankedTensorType::get(makeShapeLLVMCompatible(newShape), selfTy.getElementType()); rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(newType), self, rewriter.getDenseI64ArrayAttr(newShape)); return success(); } Value computeBatchNorm(Operation *op, ConversionPatternRewriter &rewriter, Type outType, Value input, Value variance, Value eps, Value mean, Value weight, Value bias) { // For PyTorch: // scale = gamma = weight // offset = beta = bias // Lowering: // fused batchnorm = (input-mean) * scale * rsqrt(var+epsilon)) + offset // // shape_0 = ones(input.rank) // shape_0[input.rank-1] = input.shape[input.rank-1] // shape_1 = ones(1) // // bmean = reshape(mean, shape_0) // bscale = reshape(scale, shape_0) // boffset= reshape(offset, shape_0) // beps = reshape(epsilon, shape_1) // // op1 = sub(input, bmean) // op2 = add(var, beps) // op3 = rsqrt(op2) // bvar = reshape(op3, shape_0) // op4 = mul(op1, bvar) // op5 = mul(op4, bscale) // op6 = add(op5, boffset) auto op1SubInputMean = rewriter.create(op->getLoc(), outType, input, mean); auto op2AddVarEpsilon = rewriter.create( op->getLoc(), variance.getType(), variance, eps); auto op3RsqrtOp2 = rewriter.create( op->getLoc(), variance.getType(), op2AddVarEpsilon.getResult()); auto op4MulOp1Op3 = rewriter.create(op->getLoc(), outType, op1SubInputMean.getResult(), op3RsqrtOp2.getResult(), 0); auto op5MulOp4Scale = rewriter.create( op->getLoc(), outType, op4MulOp1Op3.getResult(), weight, 0); return rewriter .create(op->getLoc(), outType, op5MulOp4Scale.getResult(), bias) .getResult(); } // This lowering is based on the TensorFlow to TOSA lowering. template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenBatchNormOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a ranked tensor output if (!adaptor.getInput().getType().dyn_cast()) return rewriter.notifyMatchFailure( op, "Only ranked tensor types are supported"); auto outType = getTypeConverter()->convertType(op.getType()); // Note: cudnn_enabled is not handled. // FIXME: Handle training and momentum. if (op.getMomentum().getType().isa()) return rewriter.notifyMatchFailure(op, "Unsupported None for momentum"); auto meanType = adaptor.getRunningMean().getType().dyn_cast(); auto varianceType = adaptor.getRunningVar().getType().dyn_cast(); if (!varianceType || !meanType) return rewriter.notifyMatchFailure( op, "Only ranked tensor types are supported"); // Normalization ops perform elementwise ops of a single mean/stdev value // against the feature map and because input is NCHW, the rank-1 value must be // reshaped so it sits on the same dim as 'C'. auto reshapeToNormInputDim = [&](Operation *op, ConversionPatternRewriter &rewriter, const TypeConverter *converter, Type outType, const Value toBcast, Value &result) { RankedTensorType toBcastType = toBcast.getType().dyn_cast(); if (toBcastType.getRank() > 1) return rewriter.notifyMatchFailure(op, "Rank cannot be more than 1"); RankedTensorType outTensorType = outType.cast(); SmallVector newShape = { makeShapeTorchCompatible(toBcastType.getShape())[0]}; for (auto i = 2; i < outTensorType.getRank(); ++i) newShape.push_back(1); auto newType = RankedTensorType::get(makeShapeLLVMCompatible(newShape), outTensorType.getElementType()); result = rewriter.create( op->getLoc(), newType, toBcast, rewriter.getDenseI64ArrayAttr(newShape)); return success(); }; Value meanVal, varianceVal, weightVal, biasVal; assert(meanType.getNumElements() != 0 && varianceType.getNumElements() != 0); if (failed(reshapeToNormInputDim(op.getOperation(), rewriter, getTypeConverter(), outType, adaptor.getRunningMean(), meanVal))) return rewriter.notifyMatchFailure(op, "Failed to reshape running mean"); if (failed(reshapeToNormInputDim(op.getOperation(), rewriter, getTypeConverter(), outType, adaptor.getRunningVar(), varianceVal))) return rewriter.notifyMatchFailure(op, "Failed to reshape running variance"); if (failed(reshapeToNormInputDim(op.getOperation(), rewriter, getTypeConverter(), outType, adaptor.getWeight(), weightVal))) return rewriter.notifyMatchFailure(op, "Failed to reshape weight"); if (failed(reshapeToNormInputDim(op.getOperation(), rewriter, getTypeConverter(), outType, adaptor.getBias(), biasVal))) return rewriter.notifyMatchFailure(op, "Failed to reshape bias"); double eps; if (!matchPattern(op.getEps(), m_TorchConstantFloat(&eps))) return rewriter.notifyMatchFailure(op, "eps must be a scalar constant"); auto epsilonConst = tosa::getConstTensor(rewriter, op.getOperation(), {static_cast(eps)}, {}, meanType.getElementType()) .value(); auto batchNorm = computeBatchNorm(op, rewriter, outType, adaptor.getInput(), varianceVal, epsilonConst, meanVal, weightVal, biasVal); rewriter.replaceOp(op, {batchNorm}); return success(); } // This lowering is loosely based on Torch to LinAlg lowering. template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenNativeLayerNormOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // The key difference from BatchNorm is that a specified set of dims // (normalized_shape) are chosen to compute the mean and variance from input. // Where as in BatchNorm the mean and variance are operands. tosa::ReduceSumOp // is used to sum up the these dims for mean and for variance. The results // eventually being reshaped for broadcasting. // Not a ranked tensor output if (!adaptor.getInput().getType().dyn_cast()) return rewriter.notifyMatchFailure( op, "Only ranked tensor types are supported"); auto inputType = adaptor.getInput().getType().cast(); if (inputType.getRank() > 4) return rewriter.notifyMatchFailure(op, "Only up to 4D tensors are supported"); auto outType = getTypeConverter()->convertType(op.getType(0)); // Note: cudnn_enabled is not handled. // FIXME: Handle the None cases for the optional parameters. if (adaptor.getWeight().getType().isa()) return rewriter.notifyMatchFailure(op, "Unsupported None for weight"); if (adaptor.getBias().getType().isa()) return rewriter.notifyMatchFailure(op, "Unsupported None for bias"); auto weightType = adaptor.getWeight().getType().cast(); auto biasType = adaptor.getBias().getType().cast(); int64_t inputRank = inputType.getRank(); Type elemTy = inputType.getElementType(); SmallVector inputTypeShape( makeShapeTorchCompatible(inputType.getShape())); // Check if all the arguments meet the requirements. SmallVector normalizedShapeSizesInt; if (!matchPattern(op.getNormalizedShape(), m_TorchListOfConstantInts(normalizedShapeSizesInt))) { return rewriter.notifyMatchFailure(op, "Unimplemented normalized_shape not" "constructed from ListConstruct"); } int64_t normalizedShapeRank = normalizedShapeSizesInt.size(); if (weightType.getRank() != normalizedShapeRank || biasType.getRank() != normalizedShapeRank || inputRank < normalizedShapeRank || normalizedShapeRank < 1) return rewriter.notifyMatchFailure(op, "Input or weight or bias shape or" "normalized shape not compatible"); // Check all the dimensions match the normalized_shape, only static shapes as // of now int64_t meanAndVarShapeRank = inputRank - normalizedShapeSizesInt.size(); for (auto en : llvm::enumerate((normalizedShapeSizesInt))) { int64_t index = en.index(); int64_t value = en.value(); if (inputTypeShape[index + meanAndVarShapeRank] != value || makeShapeTorchCompatible(weightType.getShape())[index] != value || makeShapeTorchCompatible(biasType.getShape())[index] != value) return rewriter.notifyMatchFailure(op, "mismatching contracting dimension"); } // Helper for computing mean and variance. auto computeSumAndReshape = [&](Value toReduce, RankedTensorType toReduceType, Type outType, SmallVector outShape) { Value sumDiv = toReduce; SmallVector toReduceShape( makeShapeTorchCompatible(toReduceType.getShape())); for (int64_t i = toReduceShape.size() - 1; i >= meanAndVarShapeRank; i--) { toReduceShape[i] = 1; sumDiv = rewriter.create( op.getLoc(), RankedTensorType::get(makeShapeLLVMCompatible(toReduceShape), inputType.getElementType()), sumDiv, rewriter.getI32IntegerAttr(i)); } return rewriter.create( op.getLoc(), outType, sumDiv, rewriter.getDenseI64ArrayAttr(outShape)); }; // TOSA has integer Div so, compute reciprocal of element count to be used in // mul. int64_t elemCnt = 1; for (auto i : normalizedShapeSizesInt) elemCnt *= i; auto elemCntConst = tosa::getConstTensor(rewriter, op.getOperation(), {static_cast(elemCnt)}, {1}, elemTy) .value(); Value elemCntRcp = rewriter.create( op.getLoc(), elemCntConst.getType(), elemCntConst); // Broadcast type and shape for various intermediate values. SmallVector bcastOutShape; for (auto en : llvm::enumerate(inputTypeShape)) { bcastOutShape.push_back( static_cast(en.index()) >= meanAndVarShapeRank ? 1 : en.value()); } auto bcastOutType = RankedTensorType::get(makeShapeLLVMCompatible(bcastOutShape), elemTy); // Compute mean. Value sum = computeSumAndReshape(adaptor.getInput(), inputType, bcastOutType, bcastOutShape); Value meanVal = rewriter.create(op.getLoc(), bcastOutType, sum, elemCntRcp, /*shift=*/0); // Compute variance. Value squareSumSub = rewriter.create( op.getLoc(), inputType, adaptor.getInput(), meanVal); Value squareSum = rewriter.create(op.getLoc(), inputType, squareSumSub, squareSumSub, 0); Value squareSumReduced = computeSumAndReshape(squareSum, inputType, bcastOutType, bcastOutShape); Value varianceVal = rewriter.create( op.getLoc(), bcastOutType, squareSumReduced, elemCntRcp, /*shift=*/0); // Reshape weight and bias. SmallVector weightAndBiasBcastShape; for (auto en : llvm::enumerate(makeShapeTorchCompatible(inputType.getShape()))) { weightAndBiasBcastShape.push_back( static_cast(en.index()) < meanAndVarShapeRank ? 1 : en.value()); } auto weightAndMeanBcastType = RankedTensorType::get( makeShapeLLVMCompatible(weightAndBiasBcastShape), elemTy); Value weightVal = rewriter.create( op.getLoc(), weightAndMeanBcastType, adaptor.getWeight(), rewriter.getDenseI64ArrayAttr(weightAndBiasBcastShape)); Value biasVal = rewriter.create( op.getLoc(), weightAndMeanBcastType, adaptor.getBias(), rewriter.getDenseI64ArrayAttr(weightAndBiasBcastShape)); double eps; if (!matchPattern(op.getEps(), m_TorchConstantFloat(&eps))) return rewriter.notifyMatchFailure(op, "eps must be a scalar constant"); auto epsilonConst = tosa::getConstTensor(rewriter, op.getOperation(), {static_cast(eps)}, {}, elemTy) .value(); // Compute layer norm. auto layerNorm = computeBatchNorm(op, rewriter, outType, adaptor.getInput(), varianceVal, epsilonConst, meanVal, weightVal, biasVal); rewriter.replaceOp(op, {layerNorm, meanVal, varianceVal}); return success(); } // Torch constants are converted to tosa.const . template <> LogicalResult ConvertAtenOp::matchAndRewrite( ValueTensorLiteralOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { auto outputTy = getTypeConverter() ->convertType(op.getType()) .template cast(); // Tensors with integer types need to be converted to signless integer // element type. All tensors with element types other than integer can reuse // existing elements attribute. // TODO: what about unsigned integer? if (auto elements = op.getValueAttr().dyn_cast()) { if (elements.getElementType().isSignedInteger()) { Type builtinTensorElemTy = outputTy.getElementType(); unsigned bitWidth = builtinTensorElemTy.getIntOrFloatBitWidth(); DenseElementsAttr valueAttr = elements.mapValues(builtinTensorElemTy, [&](const APInt &v) { return APInt(bitWidth, v.getSExtValue()); }); rewriter.replaceOpWithNewOp(op, outputTy, valueAttr); return success(); } } rewriter.replaceOpWithNewOp(op, outputTy, adaptor.getValue()); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenFlattenUsingIntsOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a ranked tensor type auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType || !selfType.hasStaticShape()) return rewriter.notifyMatchFailure( op, "Only ranked tensor types with static shapes are currently supported"); int64_t selfRank = selfType.getRank(); int64_t start_dim, end_dim; if (!matchPattern(op.getStartDim(), m_TorchConstantInt(&start_dim))) return rewriter.notifyMatchFailure(op, "start_dim must be a Scalar constant"); start_dim = toPositiveDim(start_dim, selfRank); if (!matchPattern(op.getEndDim(), m_TorchConstantInt(&end_dim))) return rewriter.notifyMatchFailure(op, "end_dim must be a Scalar constant"); end_dim = toPositiveDim(end_dim, selfRank); if (selfRank > 0 && !isValidDim(start_dim, selfRank)) return rewriter.notifyMatchFailure(op, "start_dim is statically invalid"); if (selfRank > 0 && !isValidDim(end_dim, selfRank)) return rewriter.notifyMatchFailure(op, "end_dim is statically invalid"); if (end_dim < start_dim) return rewriter.notifyMatchFailure(op, "end_dim must be larger than start_dim"); SmallVector newShape; for (auto s : llvm::enumerate(makeShapeTorchCompatible(selfType.getShape()))) { int64_t idx = s.index(); if (idx < start_dim || idx > end_dim) { newShape.push_back(s.value()); } else { if (idx == start_dim) newShape.push_back(s.value()); else newShape.back() *= s.value(); } } // Handle the Scalar case if (newShape.size() == 0) newShape.push_back(1); auto newType = RankedTensorType::get(makeShapeLLVMCompatible(newShape), selfType.getElementType()); auto reshapeOp = rewriter.create(op.getLoc(), newType, adaptor.getSelf(), rewriter.getDenseI64ArrayAttr(newShape)); rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(op.getType()), reshapeOp); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenUnflattenIntOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a ranked tensor type auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType || !selfType.hasStaticShape()) return rewriter.notifyMatchFailure( op, "Only ranked tensor types with static shapes are currently supported"); int64_t selfRank = selfType.getRank(); int64_t dim; if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) return rewriter.notifyMatchFailure(op, "dim must be a Scalar constant"); SmallVector sizes; if (!matchPattern(op.getSizes(), m_TorchListOfConstantInts(sizes))) return rewriter.notifyMatchFailure( op, "Only constant sizes are currently supported"); if (selfRank > 0 && !isValidDim(dim, selfRank)) return rewriter.notifyMatchFailure(op, "dim is statically invalid"); SmallVector newShape; for (auto s : llvm::enumerate(makeShapeTorchCompatible(selfType.getShape()))) { int64_t idx = s.index(); if (idx < dim || idx > dim) { newShape.push_back(s.value()); } else { auto sum = 1; for (auto newDims : sizes) { newShape.push_back(newDims); sum *= newDims; } if (sum != s.value()) return rewriter.notifyMatchFailure(op, "sizes mismatch with original dim"); } } auto newType = RankedTensorType::get(makeShapeLLVMCompatible(newShape), selfType.getElementType()); rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(newType), adaptor.getSelf(), rewriter.getDenseI64ArrayAttr(newShape)); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenPermuteOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a ranked tensor type auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType) return rewriter.notifyMatchFailure( op, "Only ranked tensor types with static shapes are currently supported"); SmallVector dimListInt; if (!matchPattern(adaptor.getDims(), m_TorchListOfConstantInts(dimListInt))) return rewriter.notifyMatchFailure( op, "Only constant dimensions are currently supported"); int64_t selfRank = selfType.getRank(); // TODO: If this is already verified on the op then we can drop checking here. for (auto &d : dimListInt) { d = toPositiveDim(d, selfRank); if (!isValidDim(d, selfRank)) return rewriter.notifyMatchFailure(op, "Not all dims are valid"); } auto transposeDimsConst = mlir::tosa::getConstTensor( rewriter, op.getOperation(), dimListInt, {selfRank}); rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(op.getType()), adaptor.getSelf(), transposeDimsConst.value()); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenLog2Op op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a tensor type. auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType) return rewriter.notifyMatchFailure( op, "Only tensor types are currently supported"); // Constant value of ln2. SmallVector ln2Shape(selfType.getRank(), 1); auto ln2Op = tosa::getConstTensor(rewriter, op, {0.69314718056f}, ln2Shape, selfType.getElementType()) .value(); auto rcpOp = rewriter.create(op.getLoc(), ln2Op.getType(), ln2Op); auto outType = getTypeConverter()->convertType(op.getType()); auto logOp = rewriter.create(op.getLoc(), outType, adaptor.getSelf()); rewriter.replaceOpWithNewOp(op, outType, logOp, rcpOp, /*shift=*/0); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenThresholdOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a tensor type. auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType) return rewriter.notifyMatchFailure( op, "Only tensor types are currently supported"); auto selfElemTy = selfType.getElementType(); if (!selfElemTy.isIntOrFloat()) return rewriter.notifyMatchFailure( op, "Only floating-point or integer datatype legalization supported"); // Integer types with width > 32 are not supported auto selfIntType = selfElemTy.dyn_cast(); if (selfIntType && selfIntType.getWidth() > 32) { return rewriter.notifyMatchFailure( op, "Integer types with width greater than 32 are not supported"); } SmallVector constTypeShape(selfType.getRank(), 1); Value threshold, value; if (failed(torchScalarToTosaTensor(rewriter, op, op.getThreshold(), threshold, selfElemTy, constTypeShape))) return rewriter.notifyMatchFailure( op, "Only scalar constant is supported for threshold"); if (failed(torchScalarToTosaTensor(rewriter, op, op.getValue(), value, selfElemTy, constTypeShape))) return rewriter.notifyMatchFailure( op, "Only scalar constant is supported for value"); // Threshold only clamps the upper values. tosa::ClampOp has the same // value for both threshold and clamped value so cannot be used. auto outType = getTypeConverter()->convertType(op.getType()); auto cmpOp = rewriter.create( op.getLoc(), RankedTensorType::get(selfType.getShape(), rewriter.getIntegerType(1)), adaptor.getSelf(), threshold); rewriter.replaceOpWithNewOp(op, outType, cmpOp, adaptor.getSelf(), value); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenUnsqueezeOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a tensor type. auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType) { return rewriter.notifyMatchFailure( op, "Only tensor types are currently supported"); } auto selfRank = selfType.getRank(); auto selfElemTy = selfType.getElementType(); if (!selfElemTy.isIntOrFloat()) { return rewriter.notifyMatchFailure( op, "Only floating-point or integer datatype legalization supported"); } int64_t dim; if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) return rewriter.notifyMatchFailure(op, "dim must be a Scalar constant"); // toPositiveDim converts negative dims to the range [0, inputRank). So, -1 // will be converted to inputRank-1. For `torch.unsqueeze` op, -1 has to be // converted to inputRank, and the valid dim range is [0, inputRank + 1). dim = toPositiveDim(dim, selfRank + 1); if (!isValidDim(dim, selfRank + 1)) return rewriter.notifyMatchFailure(op, "dim is statically invalid"); SmallVector outShape; for (auto en : llvm::enumerate(makeShapeTorchCompatible(selfType.getShape()))) { if (static_cast(en.index()) == dim) outShape.push_back(1); outShape.push_back(en.value()); } if (dim == selfRank) outShape.push_back(1); rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(op.getType()), adaptor.getSelf(), rewriter.getDenseI64ArrayAttr(outShape)); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenContiguousOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a tensor type. auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType) return rewriter.notifyMatchFailure( op, "Only tensor types are currently supported"); // FIXME: memory_format is not handled. rewriter.replaceOp(op, adaptor.getSelf()); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenDropoutOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a tensor type. auto selfType = adaptor.getInput().getType().dyn_cast(); if (!selfType) return rewriter.notifyMatchFailure( op, "Only tensor types are currently supported"); // FIXME: train and p are not handled. bool train; if (!matchPattern(op.getTrain(), m_TorchConstantBool(&train))) return rewriter.notifyMatchFailure(op, "train must be a Scalar constant"); if (train) return rewriter.notifyMatchFailure(op, "train must be false"); rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(op.getType()), adaptor.getInput()); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenViewOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a tensor type. auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType) return rewriter.notifyMatchFailure( op, "Only tensor types are currently supported"); auto selfElemTy = selfType.getElementType(); if (!selfElemTy.isIntOrFloat()) { return rewriter.notifyMatchFailure( op, "Only floating-point or integer datatype legalization supported"); } SmallVector outShape; if (!matchPattern(op.getSize(), m_TorchListOfConstantInts(outShape))) return rewriter.notifyMatchFailure(op, "size must consist of Scalar constants"); // the shape -1 is inferred from other dimensions size_t countNegativeShape{0}; // Check at most one -1 shape for (size_t i = 0; i < outShape.size(); i++) { if (outShape[i] < 0) { countNegativeShape++; if (countNegativeShape > 1) return rewriter.notifyMatchFailure(op, "At most one -1 shape"); } } auto inputShape = selfType.getShape(); size_t totalSize = 1; for (size_t i = 0; i < inputShape.size(); i++) { totalSize *= inputShape[i]; } size_t otherSize = 1; for (size_t i = 0; i < outShape.size(); i++) { if (outShape[i] > 0) { otherSize *= outShape[i]; } } for (size_t i = 0; i < outShape.size(); i++) { if (outShape[i] < 0) { outShape[i] = totalSize / otherSize; break; } } rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(op.getType()), adaptor.getSelf(), rewriter.getDenseI64ArrayAttr(outShape)); return success(); } static Value approximateErfOp(ConversionPatternRewriter &rewriter, Operation *op, Value x, Type dtype) { // Using: // https://en.wikipedia.org/wiki/Error_function#Numerical_approximations with // maximum error as 5 x 10^-4 where a1 = 0.278393, a2 = 0.230389, a3 = // 0.000972, a4 = 0.078108. // // Erf = 1 - 1 / (1 + a1X + a2X + a3X + a4X)^4 auto outType = x.getType().cast(); auto loc = op->getLoc(); auto absX = rewriter.create(loc, outType, x); auto zero = tosa::getConstTensor(rewriter, op, 0, {}, dtype).value(); auto one = tosa::getConstTensor(rewriter, op, 1, {}, dtype).value(); auto a1 = tosa::getConstTensor(rewriter, op, 0.278393f, {}, dtype).value(); auto a1X = rewriter.create(loc, outType, a1, absX, /*shift=*/0); auto sum = rewriter.create(loc, outType, a1X, one); auto a2 = tosa::getConstTensor(rewriter, op, 0.230389f, {}, dtype).value(); auto x2 = rewriter.create(loc, outType, absX, absX, /*shift=*/0); auto a2X = rewriter.create(loc, outType, a2, x2, /*shift=*/0); sum = rewriter.create(loc, outType, sum, a2X); auto a3 = tosa::getConstTensor(rewriter, op, 0.000972f, {}, dtype).value(); auto x3 = rewriter.create(loc, outType, x2, absX, /*shift=*/0); auto a3X = rewriter.create(loc, outType, a3, x3, /*shift=*/0); sum = rewriter.create(loc, outType, sum, a3X); auto a4 = tosa::getConstTensor(rewriter, op, 0.078108f, {}, dtype).value(); auto x4 = rewriter.create(loc, outType, x3, absX, /*shift=*/0); auto a4X = rewriter.create(loc, outType, a4, x4, /*shift=*/0); sum = rewriter.create(loc, outType, sum, a4X); auto rcprl = rewriter.create(loc, outType, sum); auto rcprl2 = rewriter.create(loc, outType, rcprl, rcprl, /*shift=*/0); auto rcprl4 = rewriter.create(loc, outType, rcprl2, rcprl2, /*shift=*/0); auto erf = rewriter.create(loc, outType, one, rcprl4); // Deal with negative x. auto cond = rewriter.create( loc, RankedTensorType::get(outType.getShape(), rewriter.getIntegerType(1)), x, zero); auto negateErf = rewriter.create(loc, outType, erf); return rewriter.create(loc, outType, cond, erf, negateErf); } static Value buildUnitNormalCdf(ConversionPatternRewriter &rewriter, Operation *op, Value x, Type dtype) { auto zero = tosa::getConstTensor(rewriter, op, 0, {}, dtype).value(); auto one = tosa::getConstTensor(rewriter, op, 1, {}, dtype).value(); auto loc = op->getLoc(); // buildNormalCdf, mean = zero, sigma = one auto outType = x.getType(); auto mean = zero; Value xMinusMean = rewriter.create(loc, outType, x, mean); // rsqrt of 2 Value rsqrt2 = tosa::getConstTensor(rewriter, op, 0.70710678f, {}, dtype).value(); Value erfArg = rewriter.create(loc, outType, xMinusMean, rsqrt2, /*shift=*/0); Value erf = approximateErfOp(rewriter, op, erfArg, dtype); Value erfPlus1 = rewriter.create(loc, outType, one, erf); Value oneHalf = tosa::getConstTensor(rewriter, op, 0.5, {}, dtype).value(); Value normalCdf = rewriter.create(loc, outType, oneHalf, erfPlus1, /*shift=*/0); return normalCdf; } // This lowering is based on Torch to LinAlg lowering. template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenGeluOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a tensor type. auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType) return rewriter.notifyMatchFailure( op, "Only tensor types are currently supported"); auto selfElemTy = selfType.getElementType(); if (!selfElemTy.isa()) { return rewriter.notifyMatchFailure( op, "Only floating-point datatype legalization supported"); } // TODO: Handle approximate. std::string approximate; if (!matchPattern(op.getApproximate(), m_TorchConstantStr(approximate)) || approximate != "none") { return rewriter.notifyMatchFailure(op, "Unsupported value of approximate"); } Value cdf = buildUnitNormalCdf(rewriter, op, adaptor.getSelf(), selfElemTy); cdf = rewriter.createOrFold( op->getLoc(), cast(cdf.getType()).cloneWith({}, selfElemTy), cdf); rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(op.getType()), adaptor.getSelf(), cdf, /*shift=*/0); return success(); } // This lowering is based on Torch to LinAlg lowering. template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenGeluBackwardOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a tensor type. auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType) return rewriter.notifyMatchFailure( op, "Only tensor types are currently supported"); auto selfElemTy = selfType.getElementType(); if (!selfElemTy.isa()) { return rewriter.notifyMatchFailure( op, "Only floating-point datatype legalization supported"); } // TODO: Handle approximate. std::string approximate; if (!matchPattern(op.getApproximate(), m_TorchConstantStr(approximate)) || approximate != "none") { return rewriter.notifyMatchFailure(op, "Unsupported value of approximate"); } auto loc = op->getLoc(); const float cstAlpha0 = 1.12837916709551257390f; const float cstAlpha1 = 0.70710678118654752440f; const float oneHalf = 0.5f; const float kAlpha = cstAlpha0 * cstAlpha1; Value kAlphaHalf = tosa::getConstTensor(rewriter, op, kAlpha * oneHalf, {}, selfElemTy) .value(); Value negOneHalf = tosa::getConstTensor(rewriter, op, -0.5f, {}, selfElemTy).value(); Value inputSquared = rewriter.create( loc, selfType, adaptor.getSelf(), adaptor.getSelf(), /*shift=*/0); Value negHalfInputSquared = rewriter.create( loc, selfType, inputSquared, negOneHalf, /*shift=*/0); Value dinput = rewriter.create(loc, selfType, negHalfInputSquared); Value cdf = buildUnitNormalCdf(rewriter, op, adaptor.getSelf(), selfElemTy); Value dinputInput = rewriter.create( loc, selfType, dinput, adaptor.getSelf(), /*shift=*/0); Value dinputInputAlpha = rewriter.create( loc, selfType, dinputInput, kAlphaHalf, /*shift=*/0); Value cdfExt = rewriter.create(loc, selfType, dinputInputAlpha, cdf); rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(op.getType()), adaptor.getGradOutput(), cdfExt, /*shift=*/0); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenHardtanhBackwardOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a tensor type. auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType) { return rewriter.notifyMatchFailure( op, "Only tensor types are currently supported"); } auto selfElemTy = selfType.getElementType(); if (!selfElemTy.isIntOrFloat()) { return rewriter.notifyMatchFailure( op, "Only floating-point or integer datatype legalization supported"); } // Integer types with width > 32 are not supported auto selfIntType = selfElemTy.dyn_cast(); if (selfIntType && selfIntType.getWidth() > 32) { return rewriter.notifyMatchFailure( op, "Integer types with width greater than 32 are not supported"); } Value gradOutput = adaptor.getGradOutput(); auto gradOutputType = adaptor.getSelf().getType().dyn_cast(); Type gradOutputElemType = gradOutputType.getElementType(); if (selfElemTy != gradOutputElemType) { return rewriter.notifyMatchFailure( op, "Input element type should be same as the grad_output element type."); } SmallVector constTypeShape(selfType.getRank(), 1); Value maxVal, minVal; if (failed(torchScalarToTosaTensor(rewriter, op, op.getMinVal(), minVal, selfElemTy, constTypeShape))) { return rewriter.notifyMatchFailure(op, "Only scalar constant is supported"); } if (failed(torchScalarToTosaTensor(rewriter, op, op.getMaxVal(), maxVal, selfElemTy, constTypeShape))) { return rewriter.notifyMatchFailure(op, "Only scalar constant is supported"); } Value replace = tosa::getConstTensor(rewriter, op, 0, {}, selfElemTy).value(); Type outType = getTypeConverter()->convertType(op.getType()); Value lesser = rewriter.create( op.getLoc(), RankedTensorType::get(selfType.getShape(), rewriter.getIntegerType(1)), minVal, adaptor.getSelf()); Value greater = rewriter.create( op.getLoc(), RankedTensorType::get(selfType.getShape(), rewriter.getIntegerType(1)), adaptor.getSelf(), maxVal); Value cmp = rewriter.create( op.getLoc(), RankedTensorType::get(selfType.getShape(), rewriter.getIntegerType(1)), lesser, greater); rewriter.replaceOpWithNewOp(op, outType, cmp, replace, gradOutput); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenEmbeddingOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { Value weight = adaptor.getWeight(); Value indices = adaptor.getIndices(); RankedTensorType outType = typeConverter->convertType(op.getType()).cast(); auto indicesType = indices.getType().dyn_cast(); if (!indicesType || !indicesType.getElementType().isa()) return rewriter.notifyMatchFailure( op, "Indices must be of integer tensor type"); auto weightType = weight.getType().cast(); if (weightType.getRank() != 2) return op.emitError("weight must be of rank 2"); // FIXME: padding_idx, scale_grad_by_freq and sparse are not handled yet. int64_t paddingIdx; if (!matchPattern(op.getPaddingIdx(), m_TorchConstantInt(&paddingIdx))) return rewriter.notifyMatchFailure( op, "only supports constant int padding_idx for embedding op"); bool scaleGradByFreq; if (!matchPattern(op.getScaleGradByFreq(), m_TorchConstantBool(&scaleGradByFreq))) return rewriter.notifyMatchFailure( op, "only supports constant bool scale_grad_by_freq for embedding op"); if (scaleGradByFreq) return rewriter.notifyMatchFailure( op, "only supports scale_grad_by_freq equals to False for embedding op"); bool isSparse; if (!matchPattern(op.getSparse(), m_TorchConstantBool(&isSparse))) return rewriter.notifyMatchFailure( op, "only supports constant bool sparse for embedding op"); if (isSparse) return rewriter.notifyMatchFailure( op, "only support sparse equals to False for embedding op"); // For inference: // Weights [num_embeddings, embedding_dim], Indices [X, Y] // Output [X, Y, embedding_dim] = Weights[Indices[x, y]] forall x in X, y // in Y // // Condition: num_embeddings > Indices [x, y] forall x in X, y in Y // Reshape the weight, since tosa.gather expects a 3D tensor auto indicesShape = makeShapeTorchCompatible(indicesType.getShape()); auto weightShape = makeShapeTorchCompatible(weightType.getShape()); SmallVector newWeightShape = {1}; for (auto s : weightShape) newWeightShape.push_back(s); auto reshapedWeight = rewriter.create( op->getLoc(), RankedTensorType::get(makeShapeLLVMCompatible(newWeightShape), weightType.getElementType()), weight, rewriter.getDenseI64ArrayAttr(newWeightShape)); int64_t numIndices = 1; if (indicesType.hasStaticShape()) { for (auto s : indicesShape) numIndices *= s; } else { numIndices = kUnknownSize; } SmallVector newIndicesShape = {1, numIndices}; auto reshapedIndices = rewriter.create( op->getLoc(), RankedTensorType::get(makeShapeLLVMCompatible(newIndicesShape), indicesType.getElementType()), indices, rewriter.getDenseI64ArrayAttr(newIndicesShape)); auto castIndices = rewriter.create( op->getLoc(), RankedTensorType::get(makeShapeLLVMCompatible(newIndicesShape), rewriter.getIntegerType(32)), reshapedIndices); SmallVector intermediateOutShape = {1, numIndices, weightShape[1]}; auto gatherOp = rewriter.create( op->getLoc(), RankedTensorType::get(makeShapeLLVMCompatible(intermediateOutShape), weightType.getElementType()), reshapedWeight, castIndices); rewriter.replaceOpWithNewOp( op, outType, gatherOp, rewriter.getDenseI64ArrayAttr( makeShapeTorchCompatible(outType.getShape()))); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenTransposeIntOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType) return rewriter.notifyMatchFailure(op, "Only tensor types are supported"); // Only statically resolvable values are currently supported int64_t dim0, dim1; if (!matchPattern(op.getDim0(), m_TorchConstantInt(&dim0))) return rewriter.notifyMatchFailure(op, "dim0 must be a Scalar constant"); if (!matchPattern(op.getDim1(), m_TorchConstantInt(&dim1))) return rewriter.notifyMatchFailure(op, "dim1 must be a Scalar constant"); dim0 = toPositiveDim(dim0, selfType.getRank()); dim1 = toPositiveDim(dim1, selfType.getRank()); auto selfRank = selfType.getRank(); if (!isValidDim(dim0, selfRank) || !isValidDim(dim1, selfRank)) return rewriter.notifyMatchFailure( op, "dim0 and dim1 must be less than tensor rank"); SmallVector transposeDims; for (auto i = 0; i < selfType.getRank(); ++i) transposeDims.push_back(i); transposeDims[dim0] = dim1; transposeDims[dim1] = dim0; auto transposeDimsConst = mlir::tosa::getConstTensor( rewriter, op.getOperation(), transposeDims, {selfType.getRank()}); rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(op.getType()), adaptor.getSelf(), transposeDimsConst.value()); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenMaxDimOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType) return rewriter.notifyMatchFailure(op, "Only tensor types are supported"); auto indicesType = getTypeConverter()->convertType(op.getType(1)).dyn_cast(); if (!indicesType) return rewriter.notifyMatchFailure(op, "Only tensor types are supported"); auto selfElemType = selfType.getElementType(); auto indicesElemType = indicesType.getElementType(); // Only statically deducible values are currently supported int64_t dim; if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) return rewriter.notifyMatchFailure(op, "dim must be a Scalar constant"); dim = toPositiveDim(dim, selfType.getRank()); if (!isValidDim(dim, selfType.getRank())) return rewriter.notifyMatchFailure(op, "dim must be less than tensor rank"); bool keepDim; if (!matchPattern(op.getKeepdim(), m_TorchConstantBool(&keepDim))) return rewriter.notifyMatchFailure(op, "keepdim must be a Scalar constant"); SmallVector reducedShape, prunedShape; for (auto en : llvm::enumerate(makeShapeTorchCompatible(selfType.getShape()))) { if (static_cast(en.index()) == dim) { reducedShape.push_back(1); continue; } reducedShape.push_back(en.value()); prunedShape.push_back(en.value()); } auto dimAttr = rewriter.getIntegerAttr(rewriter.getI32Type(), dim); auto prunedShapeAttr = rewriter.getDenseI64ArrayAttr(prunedShape); Value reduceMax = rewriter.create( op->getLoc(), RankedTensorType::get(makeShapeLLVMCompatible(reducedShape), selfElemType), adaptor.getSelf(), dimAttr); Value argMax = rewriter.create( op->getLoc(), RankedTensorType::get(makeShapeLLVMCompatible(prunedShape), indicesElemType), adaptor.getSelf(), dimAttr); if (argMax.getType() != indicesType) { argMax = rewriter.create( op->getLoc(), indicesType, argMax, rewriter.getDenseI64ArrayAttr(reducedShape)); } if (!keepDim) { reduceMax = rewriter.create( op->getLoc(), RankedTensorType::get(makeShapeLLVMCompatible(prunedShape), selfElemType), reduceMax, prunedShapeAttr); } rewriter.replaceOp(op, {reduceMax, argMax}); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenSliceTensorOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType || !selfType.hasStaticShape()) return rewriter.notifyMatchFailure( op, "Only tensor types with static shape are supported"); // Only statically deducible values are currently supported int64_t dim; if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) return rewriter.notifyMatchFailure(op, "dim must be a Scalar constant"); dim = toPositiveDim(dim, selfType.getRank()); if (!isValidDim(dim, selfType.getRank())) return rewriter.notifyMatchFailure(op, "dim must less than tensor rank"); int64_t start; if (!matchPattern(op.getStart(), m_TorchConstantInt(&start))) return rewriter.notifyMatchFailure(op, "start must be a Scalar constant"); if (start < 0) return rewriter.notifyMatchFailure(op, "Currently unsupported: start < 0"); start = std::min(selfType.getShape()[dim], start); int64_t end; if (!matchPattern(op.getEnd(), m_TorchConstantInt(&end))) { if (isa(op.getEnd().getDefiningOp())) end = selfType.getShape()[dim]; else return rewriter.notifyMatchFailure(op, "end must be a Scalar constant"); } // support for end < 0 end = toPositiveDim(end, selfType.getShape()[dim]); // support for end out of upper bound end = (end > selfType.getShape()[dim] ? selfType.getShape()[dim] : end); // FIXME: add support for start < 0 and end < start if (end < start) return rewriter.notifyMatchFailure(op, "Currently unsupported: end < start"); int64_t step; if (!matchPattern(op.getStep(), m_TorchConstantInt(&step))) return rewriter.notifyMatchFailure(op, "step must be a Scalar constant"); if (step != 1) return rewriter.notifyMatchFailure( op, "step value other than 1 is currently unsupported"); SmallVector startSlice(selfType.getRank(), 0); SmallVector sizeSlice = llvm::to_vector(makeShapeTorchCompatible(selfType.getShape())); startSlice[dim] = start; sizeSlice[dim] = end - start; rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(op.getType()), adaptor.getSelf(), rewriter.getDenseI64ArrayAttr(startSlice), rewriter.getDenseI64ArrayAttr(sizeSlice)); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenBroadcastToOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a tensor type. auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType || !selfType.hasStaticShape()) return rewriter.notifyMatchFailure( op, "Only tensor types with static shape are supported"); auto selfElemTy = selfType.getElementType(); if (!selfElemTy.isIntOrFloat()) { return rewriter.notifyMatchFailure( op, "Only floating-point or integer datatype legalization supported"); } SmallVector resultShape; if (!matchPattern(op.getSize(), m_TorchListOfConstantInts(resultShape))) return rewriter.notifyMatchFailure(op, "size must consist of Scalar constants"); // Get the result type auto resultType = getTypeConverter()->convertType(op.getType()); SmallVector inputShape( makeShapeTorchCompatible(selfType.getShape())); // Result dimension -1 means not changing the size of that dimension. // Adjust it by assigning its inputShape. for (auto shape : llvm::enumerate(makeShapeTorchCompatible(inputShape))) { auto index = shape.index(); if (resultShape[index] == -1) resultShape[index] = shape.value(); } // Check for identity case i.e, for ex: [a, b, c] -> [a, b, c]. If this is // true then we can replace the op result with the input operand directly. if (llvm::equal(inputShape, resultShape)) { // If we reach here, then it means that the broadcasting is not required // since the input and result are of same shape. op.replaceAllUsesWith(op.getSelf()); rewriter.eraseOp(op); return success(); } else if (selfType.hasRank() && (selfType.getRank() == (int64_t)resultShape.size() || selfType.getRank() == 0)) { // Right now to support limited cases where input and result shape are not // equal, we can put a constraint that either the input should be of rank // 0 or the rank of input tensor and result should be equal. And then we // can check for broadcasting compatibility for the latter case. For // broadcasting compatibility, either the shape of input and result should // be equal at each dimenion or one of them should be 1. if (selfType.getRank() != 0) { for (unsigned i = 0; i < inputShape.size(); i++) { if (inputShape[i] != resultShape[i] && inputShape[i] != 1 && resultShape[i] != 1) { return rewriter.notifyMatchFailure( op, "unimplemented: either the shape of input and result should " "be equal at each dimenion or one of them should be 1."); } } } // If the above condition hold true then we can directly create a const // zero tensor of shape same as the result shape. SmallVector zeroTensorShape{resultShape}; // create the 0 constant tensor int64_t totalNumElements = 1; for (auto dimSize : zeroTensorShape) { totalNumElements = dimSize * totalNumElements; } // There is some danger here. For edge cases in floating point, x + 0 != x. // The cases are denormalized values, which may get flushed, and -0 + 0 = // +0. (sign bit flips). These are probably acceptable in the short term, // but we should put a comment acknowledging the danger, as there isn't an // op that avoids the denorm flushing. Value zeroTensor = tosa::getZerosLikeTensor(rewriter, op, resultType).value(); // Use add broadcast rewriter.replaceOpWithNewOp(op, resultType, adaptor.getSelf(), zeroTensor); return success(); } return rewriter.notifyMatchFailure( op, "unimplemented: broadcasts other than same rank or zero ranked tensor."); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenGatherOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // For easy understanding of this algorithm, I will comment the code with an // exact example: torch.aten.gather (!torch.vtensor<[1,4,3],f32>, // !torch.int-1, !torch.vtensor<[1,4,2],si64>) // -> !torch.vtensor<[1,4,2],f32> // https://gist.github.com/AmosLewis/2f18434397025211da4491735bcc6db6 // Not a tensor type. auto input = adaptor.getSelf(); auto inputType = adaptor.getSelf().getType().dyn_cast(); if (!inputType) return rewriter.notifyMatchFailure( op, "Only RankedTensorType input are currently supported"); auto index = adaptor.getIndex(); auto indexType = adaptor.getIndex().getType().dyn_cast(); auto inputShape = inputType.getShape(); int paramsRank = inputShape.size(); if (!indexType) return rewriter.notifyMatchFailure( op, "Only RankedTensorType index are currently supported"); // Check `index` and `input` param should have the same rank if (indexType.getRank() != inputType.getRank()) return rewriter.notifyMatchFailure( op, "`index` and `input` param should have the same rank"); // Dynamic shape check if (!inputType.hasStaticShape() || !indexType.hasStaticShape()) return rewriter.notifyMatchFailure( op, "AtenGatherOp: support for dynamic input " "shape not implemented"); // index i64 to i32 for tosa compatitable if (indexType.getElementType() != rewriter.getIntegerType(32)) { index = rewriter.create( op->getLoc(), RankedTensorType::get(indexType.getShape(), rewriter.getIntegerType(32)), index); } // Get positive dim int64_t dim{0}; if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) return rewriter.notifyMatchFailure( op, "unimplemented: value `dim` should be a torch constant int"); dim = toPositiveDim(dim, paramsRank); if (!isValidDim(dim, paramsRank)) return rewriter.notifyMatchFailure(op, "Not dim are invalid"); // check sparseGrad is bool type bool sparseGrad = false; if (!matchPattern(op.getSparseGrad(), m_TorchConstantBool(&sparseGrad))) return rewriter.notifyMatchFailure( op, "only constant boolean `sparse_grad` param supported"); if (sparseGrad) return rewriter.notifyMatchFailure( op, "only constant boolean `sparse_grad` == false supported"); // Get the output type auto outType = getTypeConverter()->convertType(op.getType()); // convert torch style index and dim into tf style indices // tensor<[1,4,2],si64> -> tensor<[1,4,2,3],si64> auto indicesTf = tosa::convertTorchIndexToTfIndices(rewriter, op, input, index, dim); if (!indicesTf) { return rewriter.notifyMatchFailure(op, "Convert TorchIndex To TfIndices fail."); } // do the tf gathernp algorithm with tf style indices as input. auto result = tosa::convertGatherNdOp(rewriter, op, outType, input, indicesTf.value()); if (!result) { return rewriter.notifyMatchFailure(op, "Convert GatherNdOp fail."); } rewriter.replaceOp(op, {result.value()}); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( Aten_IndexPutImplOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // a = torch.tensor([[0, 1, 2, 3]]) // a[..., 1:] = torch.tensor([4, 5, 6]) // = a[..., 1:4] = torch.tensor([4, 5, 6]) // = a[[0, 0, 0], [1, 2, 3]] = torch.tensor([4, 5, 6]) # tensor([[0, 4, 5, // 6]]) = torch.ops.aten.index_put(torch.tensor([[0, 1, 2, 3]]), # input // (torch.tensor([0, 0, 0]), torch.tensor([1, 2, // 3])), # indicies torch.tensor([4, 5, 6])) # // value // = torch.ops.aten.index_put(torch.tensor([[0, 1, 2, 3]]), # input // (None, torch.tensor([1, 2, 3]),),# indicies // torch.tensor([4, 5, 6])) # value // Not a tensor type. auto input = adaptor.getSelf(); auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType) return rewriter.notifyMatchFailure( op, "Only tensor types input are currently supported"); auto fillValues = adaptor.getValues(); auto valuesType = adaptor.getValues().getType().dyn_cast(); if (!valuesType) return rewriter.notifyMatchFailure( op, "Only tensor types input are currently supported"); // Deal with torch.prim.ListConstruct of non const value to get the index auto tensorList = op.getIndices(); SmallVector tensorsTorchType; if (!getListConstructElements(tensorList, tensorsTorchType)) return op.emitError( "unimplemented: the tensor list is not from list construct"); auto indexTensors = getTypeConvertedValues( rewriter, op->getLoc(), getTypeConverter(), tensorsTorchType); auto outType = getTypeConverter()->convertType(op.getType()); // convert list of indices with none into indices tensor without none // indexTensors (none,[1,2,3]) -> ([0,0,0],[1,2,3]) // ([[0],[0],[0]],[[1],[2],[3]])-> [[0,1],[0,2], [0,3]] if (indexTensors.size() <= 1) { return rewriter.notifyMatchFailure( op, "Only support indexput with multiple index."); } SmallVector indicesTfConcatTensors; SmallVector indexesRank; SmallVector> indexesShape; // concat index tensor into to indices tensor for concat for (size_t i = 0; i < indexTensors.size(); i++) { auto index = indexTensors[i]; auto indexTorch = tensorsTorchType[i]; // TODO add support for none index other than i==0, like (index0, None) // (None, index1) if (i == 0 && indexTorch.getType().isa()) { // convert None to [0,0,0] auto indexNext = indexTensors[i + 1]; auto indexNextTorch = tensorsTorchType[i + 1]; if (indexNextTorch.getType().isa()) { return rewriter.notifyMatchFailure( op, "Multiple None index is not support for now."); } auto indexNextType = indexNext.getType().dyn_cast(); auto indexNextShape = indexNextType.getShape(); int64_t size = 1; for (auto s : indexNextShape) size *= s; SmallVector values(size, i); index = tosa::getConstTensor(rewriter, op, values, indexNextShape) .value(); } auto indexType = index.getType().dyn_cast(); auto indexShape = indexType.getShape(); indexesShape.push_back(makeShapeTorchCompatible(indexShape)); indexesRank.push_back(indexType.getRank()); // index i64 to i32 for tosa compatible if (indexType.getElementType() != rewriter.getIntegerType(32)) { index = rewriter.create( op->getLoc(), RankedTensorType::get(indexShape, rewriter.getIntegerType(32)), index); } // Expand last dim of index to tf indices [3] -> [3,1] // convert [0,0,0] to [[0],[0],[0]] SmallVector indiceShapeOneDim; for (auto shape : indexShape) { indiceShapeOneDim.push_back(shape); } indiceShapeOneDim.push_back(1); auto indicesTfOneDim = tosa::CreateOpAndInfer( rewriter, op->getLoc(), RankedTensorType::get(indiceShapeOneDim, rewriter.getIntegerType(32)), index, rewriter.getDenseI64ArrayAttr(indiceShapeOneDim)); // create concat tensor for indicesTf // ([[0],[0],[0]], [[1],[2],[3]]) indicesTfConcatTensors.push_back(indicesTfOneDim.getResult()); } // Right now only support multiple indexes with same shape // TODO for different shape multiple indexes, add broadcast_to for small // shape for (auto indexShapeOneDim : indexesShape) { if (!llvm::equal(indexesShape[0], indexShapeOneDim)) { return rewriter.notifyMatchFailure( op, "unimplemented: Only support multi indexes with same shape"); } } // concat each indices into indicesTf: shape ([3,1],[3,1]) -> [3,2] // ([0,0,0],[1,2,3]) -> [[0,1],[0,2], [0,3]] auto indicesShapeConcat = indexesShape[0]; uint64_t lastDim = indexesRank[0]; indicesShapeConcat.push_back(indicesTfConcatTensors.size()); auto indicesTf = tosa::CreateOpAndInfer( rewriter, op->getLoc(), GetTypeFromTensorShape(indicesShapeConcat, rewriter.getIntegerType(32)), indicesTfConcatTensors, lastDim); if (!indicesTf) { return rewriter.notifyMatchFailure(op, "Convert TorchIndex To TfIndices fail."); } // do the tf scatterNd algorithm with tf style indices as input, algorithm // mostly take from convertGatherNdOp. auto result = tosa::convertScatterNdOp(rewriter, op, outType, input, indicesTf.getResult(), fillValues); if (!result) { return rewriter.notifyMatchFailure( op, "Convert ScatterNdOp fail for index tensor."); } rewriter.replaceOp(op, {result.value()}); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenIndexTensorHackedTwinOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // t = tf.constant([[1, 2, 3, 4, 5],[6,7,8,9,10], // [11,12,13,14,15],[16,17,18,19,20]]) # 4*5 // i = tf.constant([[1,2,3], [3,2,1]]) # 2*3 // i_expand = tf.expand_dims(i,axis=2) # 2*3*1 // IndexTensorOutput = tf.gather_nd(t,tf.i_expand) // = torch.ops.aten.index(t, (i, )) = t[i] # 2*3*5 // [[[ 6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20]], // [[16, 17, 18, 19, 20], [11, 12, 13, 14, 15], [ 6, 7, 8, 9, 10]]] auto input = adaptor.getSelf(); auto inputTensorType = adaptor.getSelf().getType().dyn_cast(); // Check input is a tensor type. if (!inputTensorType) return rewriter.notifyMatchFailure( op, "Only tensor types input are currently supported"); // Deal with torch.prim.ListConstruct of non const value to get the index auto tensorList = op.getIndices(); SmallVector tensorsTorchType; if (!getListConstructElements(tensorList, tensorsTorchType)) return op.emitError( "unimplemented: the tensor list is not from list construct"); auto indexTensors = getTypeConvertedValues( rewriter, op->getLoc(), getTypeConverter(), tensorsTorchType); auto outType = getTypeConverter()->convertType(op.getType()); // Support for multiple indexes if (indexTensors.size() > 1) { // t[i, i] // = torch.ops.aten.index(t,(i,i)) // = tensor([[ t[1,1], t[2,2], t[3,3]], // [ t[3,3], t[2,2], t[1,1]]]) // = tensor([[ 7, 13, 19], [19, 13, 7]]) // = tf.gather_nd(t,tf.ii_expand) // ii_expand // = tf.concat((i_expand,i_expand), dim=2) // = tf.constant([[[1,1],[2,2],[3,3]], // [[3,3],[2,2],[1,1]]]) # 2*3*2 SmallVector indicesTfConcatTensors; SmallVector indexesRank; SmallVector> indexesShape; // concat index tensor into to indices tensor for concat for (size_t i = 0; i < indexTensors.size(); i++) { auto index = indexTensors[i]; auto indexType = index.getType().dyn_cast(); auto indexShape = indexType.getShape(); indexesShape.push_back(makeShapeTorchCompatible(indexShape)); indexesRank.push_back(indexType.getRank()); // Make type of index tosa compatible, i64 to i32. if (indexType.getElementType() != rewriter.getIntegerType(32)) { index = rewriter.create( op->getLoc(), RankedTensorType::get(indexShape, rewriter.getIntegerType(32)), index); } // Expand last dim of index to tf indices [2,3] -> [2,3,1] SmallVector indiceShapeOneDim; for (auto shape : indexShape) { indiceShapeOneDim.push_back(shape); } indiceShapeOneDim.push_back(1); auto indicesTfOneDim = tosa::CreateOpAndInfer( rewriter, op->getLoc(), RankedTensorType::get(indiceShapeOneDim, rewriter.getIntegerType(32)), index, rewriter.getDenseI64ArrayAttr(indiceShapeOneDim)); // create concat tensor for indicesTf indicesTfConcatTensors.push_back(indicesTfOneDim.getResult()); } // Right now only support multiple indexes with same shape // TODO for different shape multiple indexes, add broadcast_to for small // shape for (auto indexShapeOneDim : indexesShape) { if (!llvm::equal(indexesShape[0], indexShapeOneDim)) { return rewriter.notifyMatchFailure( op, "unimplemented: Only support multi indexes with same shape"); } } // concat each indices into indicesTf: shape [2,3,1],[2,3,1] -> [2,3,2] auto indicesShapeConcat = indexesShape[0]; uint64_t lastDim = indexesRank[0]; indicesShapeConcat.push_back(indicesTfConcatTensors.size()); auto indicesTf = tosa::CreateOpAndInfer( rewriter, op->getLoc(), GetTypeFromTensorShape(indicesShapeConcat, rewriter.getIntegerType(32)), indicesTfConcatTensors, lastDim); if (!indicesTf) { return rewriter.notifyMatchFailure( op, "Convert TorchIndex To TfIndices fail."); } // do the tf gathernp algorithm with tf style indices as input. auto result = tosa::convertGatherNdOp(rewriter, op, outType, input, indicesTf.getResult()); if (!result) { return rewriter.notifyMatchFailure( op, "Convert GatherNdOp fail for index tensor."); } rewriter.replaceOp(op, {result.value()}); return success(); } // Support for multiple index auto index = indexTensors[0]; auto indexType = index.getType().dyn_cast(); auto indexShape = indexType.getShape(); // index i64 to i32 for tosa compatible if (indexType.getElementType() != rewriter.getIntegerType(32)) { index = rewriter.create( op->getLoc(), RankedTensorType::get(indexShape, rewriter.getIntegerType(32)), index); } // Expand last dim of index to tf indices [2,3] -> [2,3,1] SmallVector indicesShape; for (auto shape : indexShape) { indicesShape.push_back(shape); } indicesShape.push_back(1); auto indicesTf = tosa::CreateOpAndInfer( rewriter, op->getLoc(), RankedTensorType::get(indicesShape, rewriter.getIntegerType(32)), index, rewriter.getDenseI64ArrayAttr(indicesShape)); if (!indicesTf) { return rewriter.notifyMatchFailure(op, "Convert TorchIndex To TfIndices fail."); } // do the tf gathernp algorithm with tf style indices as input. auto result = tosa::convertGatherNdOp(rewriter, op, outType, input, indicesTf.getResult()); if (!result) { return rewriter.notifyMatchFailure( op, "Convert GatherNdOp fail for index tensor."); } rewriter.replaceOp(op, {result.value()}); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenAbsOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a tensor type. auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType) return rewriter.notifyMatchFailure( op, "Only tensor types input are currently supported"); auto outType = getTypeConverter()->convertType(op.getType()); rewriter.replaceOpWithNewOp(op, outType, adaptor.getSelf()); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenWhereSelfOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a tensor type. auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType) return rewriter.notifyMatchFailure( op, "Only tensor types input are currently supported"); auto condType = adaptor.getCondition().getType().dyn_cast(); if (!condType) return rewriter.notifyMatchFailure( op, "Only tensor types condition are currently supported"); auto outType = getTypeConverter()->convertType(op.getType()); rewriter.replaceOpWithNewOp( op, outType, adaptor.getCondition(), adaptor.getSelf(), adaptor.getOther()); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenLeTensorOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a tensor type. auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType) return rewriter.notifyMatchFailure( op, "Only tensor types input are currently supported"); auto otherType = adaptor.getOther().getType().dyn_cast(); if (!otherType) return rewriter.notifyMatchFailure( op, "Only tensor types condition are currently supported"); auto outType = getTypeConverter()->convertType(op.getType()); auto greaterOp = rewriter.create( op.getLoc(), outType, adaptor.getSelf(), adaptor.getOther()); rewriter.replaceOpWithNewOp(op, outType, greaterOp.getOutput()); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenClampOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a tensor type. auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType) return rewriter.notifyMatchFailure( op, "only tensor types input are currently supported"); int64_t int_min, int_max; if (!matchPattern(op.getMin(), m_TorchConstantInt(&int_min))) return rewriter.notifyMatchFailure( op, "unimplemented: value `int_min` should be a torch constant int"); if (!matchPattern(op.getMax(), m_TorchConstantInt(&int_max))) return rewriter.notifyMatchFailure( op, "unimplemented: value `int_max` should be a torch constant int"); IntegerAttr min_int = rewriter.getI64IntegerAttr(int_min); IntegerAttr max_int = rewriter.getI64IntegerAttr(int_max); FloatAttr min_fp = rewriter.getF32FloatAttr(float(int_min)); FloatAttr max_fp = rewriter.getF32FloatAttr(float(int_max)); auto outType = getTypeConverter()->convertType(op.getType()); rewriter.replaceOpWithNewOp(op, outType, adaptor.getSelf(), min_int, max_int, min_fp, max_fp); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenArangeStartStepOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { const TypeConverter *typeConverter = this->getTypeConverter(); RankedTensorType resultType = typeConverter->convertType(op->getResult(0).getType()) .cast(); // At this point all tensors should have value semantics, and hence the // `layout` check can be ignored. // TODO: Add support for pin_memory features. // The pin_memory should be either `False` or `none`. bool pinMemory; if (!op.getPinMemory().getType().isa() && (!matchPattern(op.getPinMemory(), m_TorchConstantBool(&pinMemory)) || pinMemory)) { return rewriter.notifyMatchFailure( op, "unimplemented: pin_memory must be either None or false"); } int64_t start, step, end; if (!matchPattern(op.getStart(), m_TorchConstantInt(&start))) return rewriter.notifyMatchFailure( op, "unimplemented: value `start` should be a torch constant int"); if (!matchPattern(op.getEnd(), m_TorchConstantInt(&end))) return rewriter.notifyMatchFailure( op, "unimplemented: value `end` should be a torch constant int"); if (!matchPattern(op.getStep(), m_TorchConstantInt(&step))) return rewriter.notifyMatchFailure( op, "unimplemented: value `step` should be a torch constant int"); // The result will always be a 1-d tensor. // The size of the result is calculated as follows: // ceil((end - start)/step) int64_t resultShape = ceil((float)(end - start) / (float)step); SmallVector values(resultShape, start); for (unsigned i = 1; i < resultShape; i++) values[i] += i * step; Value result = tosa::getConstTensor(rewriter, op, values, resultShape).value(); rewriter.replaceOpWithNewOp(op, resultType, result); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( PrimNumToTensorScalarOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { const TypeConverter *typeConverter = this->getTypeConverter(); RankedTensorType resultType = typeConverter->convertType(op->getResult(0).getType()) .cast(); // Only supports integer operand type, because for the floating point operand // type result tensor has to be of type `f64` which is not supported in the // tosa. double doubleValue; auto isDouble = matchPattern(op.getA(), m_TorchConstantFloat(&doubleValue)); int64_t intValue; auto isInt = matchPattern(op.getA(), m_TorchConstantInt(&intValue)); if (!isDouble && !isInt) return rewriter.notifyMatchFailure(op, "Unable to extract the scalar constant"); auto outElemTy = resultType.getElementType(); if (outElemTy.isa()) { rewriter.replaceOpWithNewOp( op, resultType, DenseElementsAttr::get(resultType, {intValue})); } else if (outElemTy.isF64()) { rewriter.replaceOpWithNewOp( op, resultType, DenseElementsAttr::get(resultType, {doubleValue})); } return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenCopyOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a tensor type. auto selfType = adaptor.getSelf().getType().dyn_cast(); auto srcType = adaptor.getSrc().getType().dyn_cast(); if (!selfType || !selfType.hasStaticShape()) return rewriter.notifyMatchFailure( op, "Only tensor types with static shape are supported"); if (!srcType || !srcType.hasStaticShape()) return rewriter.notifyMatchFailure( op, "Only tensor types with static shape are supported"); // The non_blocking should be a constant `False`. bool nonBlocking; if (!matchPattern(op.getNonBlocking(), m_TorchConstantBool(&nonBlocking))) { return rewriter.notifyMatchFailure( op, "unimplemented: non_blocking must be a constant"); } else if (nonBlocking) { return rewriter.notifyMatchFailure( op, "unimplemented: non_blocking is expected to be false"); } SmallVector selfShape(makeShapeTorchCompatible(selfType.getShape())); SmallVector srcShape(makeShapeTorchCompatible(srcType.getShape())); if (llvm::equal(selfShape, srcShape) || selfShape.size() == 0) { // If we reach here, then it means the given case is handled by implicit // broadcasting done by tosa. Value result; if (failed(tosa::tosaCastTensorToType( rewriter, op, adaptor.getSrc(), getTypeConverter()->convertType(op.getType()), result))) return rewriter.notifyMatchFailure( op, "unimplemented: cast to result type not supported"); rewriter.replaceOp(op, result); return success(); } return rewriter.notifyMatchFailure( op, "unimplemented: valsem.aten.copy op not supported for this case."); } // Legalizes the torch.aten.to.dtype op template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenToDtypeOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Not a tensor type. auto selfType = adaptor.getSelf().getType().dyn_cast(); if (!selfType || !selfType.hasStaticShape()) return rewriter.notifyMatchFailure( op, "Only tensor types with static shape are supported"); // The non_blocking arg should be a constant `False`. bool nonBlocking; if (!matchPattern(op.getNonBlocking(), m_TorchConstantBool(&nonBlocking))) { return rewriter.notifyMatchFailure( op, "unimplemented: non_blocking arg must be a constant"); } else if (nonBlocking) { return rewriter.notifyMatchFailure( op, "unimplemented: non_blocking arg is expected to be false"); } // The copy arg should be a constant `False`. bool copy; if (!matchPattern(op.getCopy(), m_TorchConstantBool(©))) { return rewriter.notifyMatchFailure( op, "unimplemented: copy arg must be a constant"); } else if (copy) { return rewriter.notifyMatchFailure( op, "unimplemented: copy arg is expected to be false"); } // Only `none`, `contiguous` and `preserve` memory_format is supported. if (!op.getMemoryFormat().getType().isa()) { int64_t memoryFormat; if (!matchPattern(op.getMemoryFormat(), m_TorchConstantInt(&memoryFormat))) return rewriter.notifyMatchFailure( op, "unimplemented: the memory format should be specified in " "an integer constant"); if (memoryFormat != torch_upstream::MemoryFormat::Contiguous && memoryFormat != torch_upstream::MemoryFormat::Preserve) return rewriter.notifyMatchFailure( op, "unimplemented: only none, contiguous and preserve " "memory_format is supported"); } auto resultTy = getTypeConverter() ->convertType(op.getResult().getType()) .cast(); Value result; if (failed(tosa::tosaCastTensorToType(rewriter, op, adaptor.getSelf(), resultTy, result))) return rewriter.notifyMatchFailure(op, "conversion to result type failed"); rewriter.replaceOp(op, result); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenRemainderScalarOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { Value self = adaptor.getSelf(); auto selfTy = self.getType().template cast(); if (!selfTy) return rewriter.notifyMatchFailure( op, "Only ranked tensor types supported in TOSA Remainder"); auto outType = getTypeConverter()->convertType(op.getType()).template cast(); Type outElemTy = outType.getElementType(); if (!outElemTy.isIntOrFloat()) return rewriter.notifyMatchFailure( op, "Only floating-point or integer datatype legalization supported"); Value otherTensor; Value other = op.getOther(); if (failed(torchScalarToTosaTensor(rewriter, op, other, otherTensor, outElemTy, {}))) return rewriter.notifyMatchFailure( op, "Currently only scalar constants are supported for " "conversion in TOSA Remainder operation"); if (selfTy.getElementType() != outElemTy) self = rewriter.create(op.getLoc(), outType, self); auto divTensor = self; // tosa::DivOp only supports int if (outElemTy.isa()) { auto otherTensorReciprocal = rewriter.create( op.getLoc(), otherTensor.getType(), otherTensor); divTensor = rewriter.create( op.getLoc(), outType, self, otherTensorReciprocal, /*shift=*/0); divTensor = rewriter.create(op.getLoc(), outType, divTensor); } else { divTensor = rewriter.create(op.getLoc(), outType, self, otherTensor); } auto mulTensor = rewriter.create(op.getLoc(), outType, otherTensor, divTensor, /*shift=*/0); rewriter.replaceOpWithNewOp(op, outType, self, mulTensor); return success(); } template class ConvertAtenPoolingBaseOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; using OpAdaptor = typename AtenOpT::Adaptor; // Different pooling variants need to process inputs differently, e.g. // adaptive pooling generates the kernel size rather than receive it. This // function also transposes inputs. virtual LogicalResult processInputs(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, Value &input, DenseI64ArrayAttr &kernel, DenseI64ArrayAttr &stride, DenseI64ArrayAttr &pad, Type &outputTy) const { return rewriter.notifyMatchFailure( op, "Unimplemented pooling input parsing function"); } static int64_t getOutputDim(int64_t inputDim, int64_t kernelDim, int64_t stride, int64_t padBefore, int64_t padAfter, int64_t dilation, bool ceilMode = false) { if (inputDim == kUnknownSize) { return kUnknownSize; } else { int64_t dimSize = inputDim + padBefore + padAfter - dilation * (kernelDim - 1) - 1; if (ceilMode && (dimSize % stride != 0)) return dimSize / stride + 2; return dimSize / stride + 1; } } // Apply the transposeDims vector on input to generate a transposed form. Value transposeTensor(AtenOpT op, ConversionPatternRewriter &rewriter, Value input, ArrayRef transposeDims) const { auto inputTy = input.getType().template cast(); auto inputElemTy = inputTy.getElementType(); auto inputShape = makeShapeTorchCompatible(inputTy.getShape()); auto inputRank = inputTy.getRank(); std::optional transposeDimsConst = tosa::getConstTensor( rewriter, op, /*vec=*/transposeDims, /*shape=*/{static_cast(inputRank)}); SmallVector transposedInputShape; for (auto &dim : transposeDims) transposedInputShape.push_back(inputShape[dim]); auto transposedInputType = RankedTensorType::get( makeShapeLLVMCompatible(transposedInputShape), inputElemTy); return rewriter .create(op->getLoc(), transposedInputType, input, transposeDimsConst.value()) .getResult(); } Value transposePoolingInputToHwc(AtenOpT op, ConversionPatternRewriter &rewriter, Value input) const { auto inputRank = input.getType().template cast().getRank(); SmallVector nchwToNhwc4DTransposeDims({0, 2, 3, 1}); SmallVector chwToHwc3DTransposeDims({1, 2, 0}); return transposeTensor(op, rewriter, input, inputRank == 3 ? chwToHwc3DTransposeDims : nchwToNhwc4DTransposeDims); } Value transposePoolingOutputToChw(AtenOpT op, ConversionPatternRewriter &rewriter, Value input) const { auto inputTy = input.getType().template cast(); auto inputRank = inputTy.getRank(); SmallVector nhwcToNchw4DTransposeDims({0, 3, 1, 2}); SmallVector hwcToChw3DTransposeDims({2, 0, 1}); return transposeTensor(op, rewriter, input, inputRank == 3 ? hwcToChw3DTransposeDims : nhwcToNchw4DTransposeDims); } LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Value input; DenseI64ArrayAttr kernel, stride, pad; Type outputTy; // Attempts to read input and kernel parameters, or synthesize them in the // case of adaptive pooling. Also performs input CHW->HWC transpose. if (failed(processInputs(op, adaptor, rewriter, input, kernel, stride, pad, outputTy))) return rewriter.notifyMatchFailure( op, "Failed to process inputs for pooling"); Value pooledOutput; static_assert(std::is_same::value || std::is_same::value, "Expected either tosa::MaxPool2dOp or tosa::AvgPool2dOp"); if constexpr (std::is_same::value) { pooledOutput = rewriter .create(op->getLoc(), outputTy, input, kernel, stride, pad) .getResult(); } else if constexpr (std::is_same::value) { TypeAttr accType; if (failed(tosa::getAvgPool2dAccType(rewriter, input, accType))) return rewriter.notifyMatchFailure( op, "Failed to get accumulator type for pooling"); pooledOutput = rewriter .create(op->getLoc(), outputTy, input, kernel, stride, pad, accType) .getResult(); } auto transposedOutput = ConvertAtenPoolingBaseOp::transposePoolingOutputToChw( op, rewriter, pooledOutput); rewriter.replaceOpWithNewOp( op, OpConversionPattern::getTypeConverter()->convertType( op.getType()), transposedOutput); return success(); } }; template class ConvertAtenAdaptivePoolingOp : public ConvertAtenPoolingBaseOp { public: using ConvertAtenPoolingBaseOp::ConvertAtenPoolingBaseOp; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult processInputs(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, Value &input, DenseI64ArrayAttr &kernel, DenseI64ArrayAttr &stride, DenseI64ArrayAttr &pad, Type &outputTy) const override { auto inputXchw = adaptor.getSelf(); auto inputTy = inputXchw.getType().template cast(); if (!inputTy) return rewriter.notifyMatchFailure( op, "Adaptive avgpool requires ranked tensor input"); auto inputShape = makeShapeTorchCompatible(inputTy.getShape()); auto inputRank = inputTy.getRank(); auto inputElemTy = inputTy.getElementType(); // Rank sanity check. if (inputTy.getRank() != 4 && inputRank != 3) return rewriter.notifyMatchFailure( op, "NCHW->NHWC transpose requires 3D or 4D tensor"); int64_t inputHDim = inputShape[inputRank - 2]; int64_t inputWDim = inputShape[inputRank - 1]; SmallVector outputSize; if (!matchPattern(op.getOutputSize(), m_TorchListOfConstantInts(outputSize))) return rewriter.notifyMatchFailure( op, "Non-const output_size for adaptive pooling unsupported."); SmallVector kernelDims; int64_t outputHDim, outputWDim; if (outputSize.size() == 1) { outputHDim = outputWDim = outputSize[0]; } else { if (outputSize.size() != 2) return rewriter.notifyMatchFailure( op, "Adaptive avgpool output_size not 1 or 2 elements."); // Assumes 'None' (e.g. output_size=(None, 5) ) is expressed as <=0. outputHDim = (outputSize[0] <= 0) ? inputShape[inputRank - 2] : outputSize[0]; outputWDim = (outputSize[1] <= 0) ? inputShape[inputRank - 1] : outputSize[1]; } // In adaptive pooling, // stride = inputDim // outputDim // kernel = inputDim - (outputDim-1)* stride // pad = 0, dilation = 1 int64_t strideH = inputShape[inputRank - 2] / outputHDim; int64_t strideW = inputShape[inputRank - 1] / outputWDim; kernelDims.push_back(inputHDim - (outputHDim - 1) * strideH); kernelDims.push_back(inputWDim - (outputWDim - 1) * strideW); SmallVector outputShape; if (inputRank > 3) outputShape.push_back(inputShape[0]); outputShape.push_back(outputHDim); outputShape.push_back(outputWDim); outputShape.push_back(inputShape[inputRank - 3]); // Transpose to xHWC input = ConvertAtenPoolingBaseOp::transposePoolingInputToHwc( op, rewriter, inputXchw); kernel = rewriter.getDenseI64ArrayAttr(kernelDims); stride = rewriter.getDenseI64ArrayAttr({strideH, strideW}); // Adaptive pooling does unit dilation and zero pad. pad = rewriter.getDenseI64ArrayAttr({0, 0, 0, 0}); outputTy = RankedTensorType::get(makeShapeLLVMCompatible(outputShape), inputElemTy); return success(); } }; template static Type getOutputTypeForNonAdaptivePoolingOp( RankedTensorType inputTy, SmallVectorImpl &kernelSize, SmallVectorImpl &strideArray, SmallVectorImpl &padArray, SmallVectorImpl &dilationArray, bool ceilMode = false) { auto inputShape = makeShapeTorchCompatible(inputTy.getShape()); auto inputRank = inputTy.getRank(); auto inputElemTy = inputTy.getElementType(); int64_t outputHDim = ConvertAtenPoolingBaseOp::getOutputDim( inputShape[inputRank - 2], kernelSize[0], strideArray[0], padArray[0], padArray[0], dilationArray[0], ceilMode); int64_t outputWDim = ConvertAtenPoolingBaseOp::getOutputDim( inputShape[inputRank - 1], kernelSize[1], strideArray[1], padArray[1], padArray[1], dilationArray[1], ceilMode); padArray[0] = (outputHDim - 1) * strideArray[0] + dilationArray[0] * kernelSize[0] - dilationArray[0] + 1 - padArray[0] * 2 - inputShape[inputRank - 2]; padArray[1] = (outputWDim - 1) * strideArray[1] + dilationArray[0] * kernelSize[1] - dilationArray[0] + 1 - padArray[1] * 2 - inputShape[inputRank - 1]; SmallVector outputShape; if (inputRank > 3) outputShape.push_back(inputShape[0]); outputShape.push_back(outputHDim); outputShape.push_back(outputWDim); outputShape.push_back(inputShape[inputRank - 3]); return RankedTensorType::get(makeShapeLLVMCompatible(outputShape), inputElemTy); } // Checks the validity of pooling parameters and stores them in the respective // vector. Also, gets the output type for the pooling op. template static LogicalResult getOutputTypeAndPoolingParameters( AtenOpT op, ConversionPatternRewriter &rewriter, Value inputXchw, SmallVectorImpl &dilationArray, Type &outputTy, DenseI64ArrayAttr &kernel, DenseI64ArrayAttr &stride, DenseI64ArrayAttr &pad) { RankedTensorType inputTy = inputXchw.getType().cast(); if (!inputTy) return rewriter.notifyMatchFailure( op, "Pooling op requires ranked tensor input"); auto inputRank = inputTy.getRank(); // Rank sanity check. if (inputTy.getRank() != 4 && inputRank != 3) return rewriter.notifyMatchFailure( op, "NCHW->NHWC transpose requires 3D or 4D tensor"); SmallVector kernelSizeInts, strideInts, paddingInts; if (!matchPattern(op.getKernelSize(), m_TorchListOfConstantInts(kernelSizeInts))) return rewriter.notifyMatchFailure( op, "Non-const kernel_size for pooling op unsupported"); if (!matchPattern(op.getStride(), m_TorchListOfConstantInts(strideInts))) return rewriter.notifyMatchFailure( op, "Non-const stride for pooling op unsupported"); // If `stride` is not specified by the user, it is assigned the value of empty // list during import. For such a case, the stride value is the kernel size. // See: // https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d if (strideInts.empty()) strideInts.assign(kernelSizeInts); if (!matchPattern(op.getPadding(), m_TorchListOfConstantInts(paddingInts))) return rewriter.notifyMatchFailure( op, "Non-const padding factor for pooling op unsupported"); SmallVector padArr = {paddingInts[0], paddingInts[0], paddingInts[1], paddingInts[1]}; kernel = rewriter.getDenseI64ArrayAttr(kernelSizeInts); stride = rewriter.getDenseI64ArrayAttr(strideInts); bool ceilMode; if (!matchPattern(op.getCeilMode(), m_TorchConstantBool(&ceilMode))) return rewriter.notifyMatchFailure( op, "only support constant bool ceil_mode for pooling op"); outputTy = getOutputTypeForNonAdaptivePoolingOp( inputTy, kernelSizeInts, strideInts, paddingInts, dilationArray, ceilMode); padArr[1] = padArr[1] + paddingInts[0]; padArr[3] = padArr[3] + paddingInts[1]; pad = rewriter.getDenseI64ArrayAttr( {padArr[0], padArr[1], padArr[2], padArr[3]}); return success(); } class ConvertAtenMaxPool2dOp : public ConvertAtenPoolingBaseOp { public: using ConvertAtenPoolingBaseOp::ConvertAtenPoolingBaseOp; LogicalResult processInputs(AtenMaxPool2dOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, Value &input, DenseI64ArrayAttr &kernel, DenseI64ArrayAttr &stride, DenseI64ArrayAttr &pad, Type &outputTy) const override { SmallVector dilationArray; if (!matchPattern(op.getDilation(), m_TorchListOfConstantInts(dilationArray))) return rewriter.notifyMatchFailure( op, "Non-const dilation for pooling op unsupported."); // TOSA pooling only supports unit dilation. if (dilationArray[0] > 1 || dilationArray[1] > 1) return rewriter.notifyMatchFailure( op, "Cannot process non-unit pooling dilation."); if (failed(getOutputTypeAndPoolingParameters( op, rewriter, adaptor.getSelf(), dilationArray, outputTy, kernel, stride, pad))) return rewriter.notifyMatchFailure( op, "invalid pooling parameters or input type"); // Transpose to xHWC input = ConvertAtenPoolingBaseOp:: transposePoolingInputToHwc(op, rewriter, adaptor.getSelf()); return success(); } }; class ConvertAtenAvgPool2dOp : public ConvertAtenPoolingBaseOp { public: using ConvertAtenPoolingBaseOp::ConvertAtenPoolingBaseOp; LogicalResult processInputs(AtenAvgPool2dOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter, Value &input, DenseI64ArrayAttr &kernel, DenseI64ArrayAttr &stride, DenseI64ArrayAttr &pad, Type &outputTy) const override { SmallVector dilationArray{1, 1}; if (failed(getOutputTypeAndPoolingParameters( op, rewriter, adaptor.getSelf(), dilationArray, outputTy, kernel, stride, pad))) return rewriter.notifyMatchFailure( op, "invalid pooling parameters or input type"); // Transpose to xHWC input = ConvertAtenPoolingBaseOp:: transposePoolingInputToHwc(op, rewriter, adaptor.getSelf()); return success(); } }; // Ref: Error checking based on the Torch to LinAlg lowering template class ConvertAtenConstPatternOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { auto outType = OpConversionPattern::getTypeConverter() ->convertType(op.getType()) .template dyn_cast(); if (!outType) return rewriter.notifyMatchFailure(op, "Only Tensor types supported in TOSA"); Type outElemTy = outType.getElementType(); if (!outElemTy.isIntOrFloat()) return rewriter.notifyMatchFailure( op, "Only floating-point or integer datatype legalization supported"); // FIXME: Handle layout, device and pin_memory. Assume dtype has been // processed to set output type correctly? // The layout arg should be either `none` or `0` i.e. strided. if (!op.getLayout().getType().template isa()) { int64_t tensorLayout; if (!matchPattern(op.getLayout(), m_TorchConstantInt(&tensorLayout))) return rewriter.notifyMatchFailure( op, "The layout arg should be either `none` or `0` i.e. strided."); else if (tensorLayout != torch_upstream::Layout::Strided) return rewriter.notifyMatchFailure( op, "The layout arg should be either `none` or `0` i.e. strided."); } bool pinMemory; if (!op.getPinMemory().getType().template isa() && (!matchPattern(op.getPinMemory(), m_TorchConstantBool(&pinMemory)) || pinMemory)) { return rewriter.notifyMatchFailure( op, "Unsupported pin_memory, should be either None or false"); } SmallVector shape; if (!matchPattern(op.getSize(), m_TorchListOfConstantInts(shape))) { return rewriter.notifyMatchFailure( op, "Shape must be a list of Scalar constants"); } int64_t size = 1; for (auto s : shape) size *= s; SmallVector values(size, fillVal); auto constOp = tosa::getConstTensor(rewriter, op, values, shape).value(); rewriter.replaceOpWithNewOp(op, outType, constOp); return success(); } }; template class ConvertAtenFillScalarOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { auto outType = OpConversionPattern::getTypeConverter() ->convertType(op.getType()) .template dyn_cast(); if (!outType || !outType.hasStaticShape()) return rewriter.notifyMatchFailure( op, "Only Tensor types with static shapes are currently supported"); Type outElemTy = outType.getElementType(); if (!outElemTy.isIntOrFloat()) { return rewriter.notifyMatchFailure( op, "Only floating-point or integer datatype legalization supported"); } Value constOp; if (failed(torchScalarToTosaTensor( rewriter, op, op.getValue(), constOp, outElemTy, makeShapeTorchCompatible(outType.getShape())))) return rewriter.notifyMatchFailure( op, "Supplied value must be a Scalar constant"); rewriter.replaceOpWithNewOp(op, outType, constOp); return success(); } }; template class ConvertAtenMaskedFillOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { auto outType = OpConversionPattern::getTypeConverter() ->convertType(op.getType()) .template dyn_cast(); if (!outType || !outType.hasStaticShape()) return rewriter.notifyMatchFailure( op, "Only Tensor types with static shapes are currently supported"); Type outElemTy = outType.getElementType(); if (!outElemTy.isIntOrFloat()) { return rewriter.notifyMatchFailure( op, "Only floating-point or integer datatype legalization supported"); } // Not a tensor type. auto selfType = adaptor.getSelf().getType().template dyn_cast(); if (!selfType || !outType.hasStaticShape()) return rewriter.notifyMatchFailure( op, "Only tensor types with static shapes input are currently supported"); auto maskType = adaptor.getMask().getType().template dyn_cast(); if (!maskType) return rewriter.notifyMatchFailure( op, "Only tensor types mask are currently supported"); Value rhs = adaptor.getValue(); auto rhsType = rhs.getType().template dyn_cast(); Value rhsAsTensor; if (!rhsType) { // scalar if (failed(torchScalarToTosaTensor(rewriter, op, op.getValue(), rhsAsTensor, rhs.getType(), {}))) return rewriter.notifyMatchFailure( op, "Currently only scalar constants are supported for " "conversion in TOSA operation"); } else { // tensor rhsType = rhs.getType().dyn_cast(); } auto rhsTensor = rhsType ? rhs : rhsAsTensor; auto rhsTensorType = rhsTensor.getType().template dyn_cast(); if (rhsTensorType.getElementType() != outElemTy) rhsTensor = rewriter.create( op.getLoc(), RankedTensorType::get(rhsTensorType.getShape(), outElemTy), rhsTensor); rewriter.replaceOpWithNewOp(op, outType, adaptor.getMask(), rhsTensor, adaptor.getSelf()); return success(); } }; // Legalizes the torch.clone op. template class ConvertAtenCloneOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; using OpAdaptor = typename AtenOpT::Adaptor; LogicalResult matchAndRewrite(AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { int64_t memoryFormat; if (!op.getMemoryFormat().getType().template isa() && (!matchPattern(op.getMemoryFormat(), m_TorchConstantInt(&memoryFormat)) || (memoryFormat != torch_upstream::MemoryFormat::Contiguous && memoryFormat != torch_upstream::MemoryFormat::ChannelsLast))) { return op.emitError( "unimplemented: only contiguous and channels last memory " "format is supported"); } auto outType = OpConversionPattern::getTypeConverter() ->convertType(op.getType()) .template dyn_cast(); rewriter.replaceOpWithNewOp(op, outType, adaptor.getSelf()); return success(); } }; template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenConstantPadNdOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { Location loc = op.getLoc(); Value self = adaptor.getSelf(); auto selfTy = self.getType().cast(); auto selfElemTy = selfTy.getElementType(); int64_t rank = selfTy.getRank(); // START the code snippet from // lib/Conversion/TorchToLinalg/TensorConstructors.cpp (see: // ConvertAtenConstantPadNdOp) Pattern match against the op's original // operands, because otherwise we will get the lowered version of the operands // which is harder to pattern match. SmallVector padInts; if (!matchPattern(op.getPad(), m_TorchListOfConstantInts(padInts))) return rewriter.notifyMatchFailure(op, "only support constant int pad ranges"); uint64_t padRank = padInts.size() / 2; if (padRank * 2 != padInts.size()) return rewriter.notifyMatchFailure(op, "pad range size is not even"); if (rank < 0 || padRank > (uint64_t)rank) return rewriter.notifyMatchFailure(op, "padding exceeds tensor rank"); // Initialize low/high paddings with 0 for all the dims. SmallVector lowPadding(/*Size=*/rank, /*Value=*/0); SmallVector highPadding(/*Size=*/rank, /*Value=*/0); // Add the requested padding - note op.pad() is highest dim first ordered // pairs of low,high. for (uint64_t i = 0; i < padRank; ++i) { lowPadding[rank - i - 1] = padInts[i * 2]; highPadding[rank - i - 1] = padInts[i * 2 + 1]; } // END the code snippet from // lib/Conversion/TorchToLinalg/TensorConstructors.cpp (see: // ConvertAtenConstantPadNdOp) llvm::SmallVector translatePadsList; for (unsigned int i = 0; i < rank; i++) { translatePadsList.push_back(lowPadding[i]); translatePadsList.push_back(highPadding[i]); } DenseElementsAttr paddingAttr = DenseIntElementsAttr::get( RankedTensorType::get({rank, 2}, rewriter.getI64Type()), translatePadsList); Value padsList1 = rewriter.create( loc, paddingAttr.getType(), paddingAttr); Value padValue = adaptor.getValue(); Operation *padOp = padValue.getDefiningOp(); padValue = padOp->getOperand(0); Value padTensor; if (failed(torchScalarToTosaTensor(rewriter, op.getOperation(), padValue, padTensor, selfElemTy, {}))) return rewriter.notifyMatchFailure( op, "Pad value needs to be a scalar constant for conversion to " "TOSA pad operation"); rewriter.replaceOpWithNewOp( op, getTypeConverter()->convertType(op.getType()), self, padsList1, padTensor); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenCatOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { const TypeConverter *typeConverter = this->getTypeConverter(); auto outType = typeConverter->convertType(op.getType()).cast(); int64_t rank = outType.getRank(); int64_t dim; if (!outType || !outType.hasStaticShape()) { return rewriter.notifyMatchFailure( op, "Only Tensor types with static shapes are currently supported"); } Location loc = op.getLoc(); if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) { return rewriter.notifyMatchFailure(op, "unimplemented: dim is not constant"); } dim = toPositiveDim(dim, rank); if (!isValidDim(dim, rank)) { return rewriter.notifyMatchFailure(op, "dim is statically invalid"); } auto tensorList = op.getTensors(); SmallVector tensorsTorchType; if (!getListConstructElements(tensorList, tensorsTorchType)) { return rewriter.notifyMatchFailure( op, "unimplemented: the tensor list is not from list construct"); } auto builtinTensors = getTypeConvertedValues(rewriter, loc, typeConverter, tensorsTorchType); auto result = tosa::CreateOpAndInfer( rewriter, loc, outType, builtinTensors, rewriter.getI32IntegerAttr(dim)); rewriter.replaceOp(op, result.getResult()); return success(); } template <> LogicalResult ConvertAtenOp::matchAndRewrite( AtenSqrtOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const { // Converts AtenSqrtOp into pow(x, 0.5) auto self = adaptor.getSelf(); auto selfTy = self.getType().dyn_cast(); if (!selfTy) return rewriter.notifyMatchFailure(op, "Only Tensor types supported in TOSA"); auto resultType = typeConverter->convertType(op.getType()) .template cast(); auto elementType = resultType.getElementType(); if (isa(selfTy.getElementType())) { self = rewriter.createOrFold( op->getLoc(), RankedTensorType::get(resultType.getShape(), elementType), self); } auto oneHalf = tosa::getConstTensor(rewriter, op, 0.5, {}, elementType).value(); rewriter.replaceOpWithNewOp(op, resultType, self, oneHalf); return success(); } } // namespace // ----------------------------------------------------------------------------- // TorchToTosa Pass // ----------------------------------------------------------------------------- namespace { class ConvertTorchToTosa : public ConvertTorchToTosaBase { public: void getDependentDialects(DialectRegistry ®istry) const override { registry.insert(); registry.insert(); registry.insert(); TorchConversion::getBackendTypeConversionDependentDialects(registry); } void runOnOperation() override { MLIRContext *context = &getContext(); ConversionTarget target(*context); target.addLegalDialect(); TypeConverter typeConverter; typeConverter.addConversion([](Type type) { return type; }); TorchConversion::setupBackendTypeConversion(target, typeConverter); // The following ops are never the primary reason why lowering fails. // The backend contract only allows functions to return tensors thus there // is always another op using them. // When we have a chain of torch.constant.int followed by a unsupported // torch op, we want the pass to mention the unsupported torch op // in the error message. target.addLegalOp(); target.addLegalOp(); target.addLegalOp(); target.addLegalOp(); target.addLegalOp(); target.addLegalOp(); target.addLegalOp(); target.addLegalOp(); target.addIllegalDialect(); RewritePatternSet patterns(context); #define INSERT_UNARY_FPONLY_PATTERN(AtenOp, TosaOp) \ target.addIllegalOp(); \ patterns.add>(typeConverter, \ context); INSERT_UNARY_FPONLY_PATTERN(AtenLogOp, tosa::LogOp) INSERT_UNARY_FPONLY_PATTERN(AtenExpOp, tosa::ExpOp) #undef INSERT_UNARY_FPONLY_PATTERN #define INSERT_UNARY_PATTERN(AtenOp, TosaOp) \ target.addIllegalOp(); \ patterns.add>(typeConverter, context); INSERT_UNARY_PATTERN(AtenNegOp, tosa::NegateOp) INSERT_UNARY_PATTERN(AtenFloorOp, tosa::FloorOp) INSERT_UNARY_PATTERN(AtenRsqrtOp, tosa::RsqrtOp) INSERT_UNARY_PATTERN(AtenBitwiseNotOp, tosa::BitwiseNotOp) INSERT_UNARY_PATTERN(AtenCeilOp, tosa::CeilOp) INSERT_UNARY_PATTERN(AtenReciprocalOp, tosa::ReciprocalOp) #undef INSERT_UNARY_PATTERN #define INSERT_BINARY_PATTERN(AtenOp, TosaOp) \ target.addIllegalOp(); \ patterns.add>(typeConverter, context); INSERT_BINARY_PATTERN(AtenMaximumOp, tosa::MaximumOp) INSERT_BINARY_PATTERN(AtenMinimumOp, tosa::MinimumOp) #undef INSERT_BINARY_PATTERN #define INSERT_BINARY_ADDSUB_PATTERN(AtenOp, TosaOp) \ target.addIllegalOp(); \ patterns.add>(typeConverter, context); INSERT_BINARY_ADDSUB_PATTERN(AtenAddTensorOp, tosa::AddOp) INSERT_BINARY_ADDSUB_PATTERN(AtenAddScalarOp, tosa::AddOp) INSERT_BINARY_ADDSUB_PATTERN(AtenSubTensorOp, tosa::SubOp) INSERT_BINARY_ADDSUB_PATTERN(AtenSubScalarOp, tosa::SubOp) #undef INSERT_BINARY_ADDSUB_PATTERN #define INSERT_BINARY_COMPARE_PATTERN(AtenOp, TosaOp) \ target.addIllegalOp(); \ patterns.add>(typeConverter, context); INSERT_BINARY_COMPARE_PATTERN(AtenGtTensorOp, tosa::GreaterOp) INSERT_BINARY_COMPARE_PATTERN(AtenGeScalarOp, tosa::GreaterEqualOp) INSERT_BINARY_COMPARE_PATTERN(AtenGtScalarOp, tosa::GreaterOp) INSERT_BINARY_COMPARE_PATTERN(AtenLtTensorOp, tosa::GreaterOp) INSERT_BINARY_COMPARE_PATTERN(AtenLtScalarOp, tosa::GreaterOp) INSERT_BINARY_COMPARE_PATTERN(AtenEqTensorOp, tosa::EqualOp) INSERT_BINARY_COMPARE_PATTERN(AtenEqScalarOp, tosa::EqualOp) INSERT_BINARY_COMPARE_PATTERN(AtenNeTensorOp, tosa::EqualOp) INSERT_BINARY_COMPARE_PATTERN(AtenNeScalarOp, tosa::EqualOp) INSERT_BINARY_COMPARE_PATTERN(AtenBitwiseAndTensorOp, tosa::BitwiseAndOp) INSERT_BINARY_COMPARE_PATTERN(AtenBitwiseOrTensorOp, tosa::BitwiseOrOp) INSERT_BINARY_COMPARE_PATTERN(AtenBitwiseXorTensorOp, tosa::BitwiseXorOp) #undef INSERT_BINARY_COMPARE_PATTERN #define INSERT_BINARY_MUL_PATTERN(AtenOp) \ target.addIllegalOp(); \ patterns.add>(typeConverter, context); INSERT_BINARY_MUL_PATTERN(AtenMulTensorOp); INSERT_BINARY_MUL_PATTERN(AtenMulScalarOp); #undef INSERT_BINARY_MUL_PATTERN #define INSERT_BINARY_DIV_PATTERN(AtenOp) \ target.addIllegalOp(); \ patterns.add>(typeConverter, context); INSERT_BINARY_DIV_PATTERN(AtenDivTensorOp); INSERT_BINARY_DIV_PATTERN(AtenDivScalarOp); #undef INSERT_BINARY_DIV_PATTERN #define INSERT_NDIMS_REDUCTION_OP_PATTERN(AtenOp, ConversionFunc) \ target.addIllegalOp(); \ patterns.add>( \ typeConverter, context); INSERT_NDIMS_REDUCTION_OP_PATTERN(AtenMeanDimOp, mlir::tosa::convertReduceMeanOp) INSERT_NDIMS_REDUCTION_OP_PATTERN(AtenSumDimIntListOp, mlir::tosa::convertReduceSumOp) #undef INSERT_NDIMS_REDUCTION_OP_PATTERN #define INSERT_ONEDIM_REDUCTION_OP_PATTERN(AtenOp, ConversionFunc) \ target.addIllegalOp(); \ patterns.add>( \ typeConverter, context); INSERT_ONEDIM_REDUCTION_OP_PATTERN(AtenAnyDimOp, mlir::tosa::convertReduceAnyOp) #undef INSERT_ONEDIM_REDUCTION_OP_PATTERN #define INSERT_ALLDIMS_REDUCTION_OP_PATTERN(AtenOp, ConversionFunc) \ target.addIllegalOp(); \ patterns.add>( \ typeConverter, context); INSERT_ALLDIMS_REDUCTION_OP_PATTERN(AtenAllOp, mlir::tosa::convertReduceAllOp) INSERT_ALLDIMS_REDUCTION_OP_PATTERN(AtenAnyOp, mlir::tosa::convertReduceAnyOp) INSERT_ALLDIMS_REDUCTION_OP_PATTERN(AtenSumOp, mlir::tosa::convertReduceSumOp) #undef INSERT_ALLDIMS_REDUCTION_OP_PATTERN #define INSERT_SQUEEZE_OP_PATTERN(AtenOp, TemplateForm) \ target.addIllegalOp(); \ patterns.add>(typeConverter, context); INSERT_SQUEEZE_OP_PATTERN(AtenSqueezeOp, ConvertAtenSqueezeAllDimsOp) INSERT_SQUEEZE_OP_PATTERN(AtenSqueezeDimOp, ConvertAtenSqueezeOneDimOp) #undef INSERT_SQUEEZE_OP_PATTERN #define INSERT_MATMUL_ATENOP_PATTERN(AtenOp) \ target.addIllegalOp(); \ patterns.add>(typeConverter, context); INSERT_MATMUL_ATENOP_PATTERN(AtenMatmulOp); #undef INSERT_MATMUL_ATEMOP_PATTERN #define INSERT_MM_ATENOP_PATTERN(AtenOp) \ target.addIllegalOp(); \ patterns.add>(typeConverter, context); INSERT_MM_ATENOP_PATTERN(AtenMmOp); INSERT_MM_ATENOP_PATTERN(AtenBmmOp); #undef INSERT_MM_ATEMOP_PATTERN #define INSERT_LINEAR_ATENOP_PATTERN(AtenOp) \ target.addIllegalOp(); \ patterns.add>(typeConverter, context); INSERT_LINEAR_ATENOP_PATTERN(AtenLinearOp); #undef INSERT_LINEAR_ATEMOP_PATTERN #define INSERT_ADAPTIVE_POOLING_ATENOP_PATTERN(AtenOp, TosaOpT) \ target.addIllegalOp(); \ patterns.add>(typeConverter, \ context); INSERT_ADAPTIVE_POOLING_ATENOP_PATTERN(AtenAdaptiveAvgPool2dOp, tosa::AvgPool2dOp); #undef INSERT_ADAPTIVE_POOLING_ATEMOP_PATTERN target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); #define INSERT_CONSTANT_FILL_PATTERN(AtenOp, fillVal) \ target.addIllegalOp(); \ patterns.add>(typeConverter, \ context); INSERT_CONSTANT_FILL_PATTERN(AtenOnesOp, 1); INSERT_CONSTANT_FILL_PATTERN(AtenZerosOp, 0); #undef INSERT_CONSTANT_FILL_PATTERN #define INSERT_FILL_SCALAR_PATTERN(AtenOp) \ target.addIllegalOp(); \ patterns.add>(typeConverter, context); INSERT_FILL_SCALAR_PATTERN(AtenFill_ScalarOp); #undef INSERT_FILL_SCALAR_PATTERN #define INSERT_MASKED_FILL_PATTERN(AtenOp) \ target.addIllegalOp(); \ patterns.add>(typeConverter, context); INSERT_MASKED_FILL_PATTERN(AtenMaskedFillScalarOp); INSERT_MASKED_FILL_PATTERN(AtenMaskedFillTensorOp); #undef INSERT_MASKED_FILL_PATTERN #define INSERT_ATENOP_PATTERN(AtenOp) \ target.addIllegalOp(); \ patterns.add>(typeConverter, context); INSERT_ATENOP_PATTERN(AtenTanhOp); INSERT_ATENOP_PATTERN(AtenHardtanhBackwardOp); INSERT_ATENOP_PATTERN(AtenSigmoidOp); INSERT_ATENOP_PATTERN(AtenReluOp); INSERT_ATENOP_PATTERN(AtenLeakyReluOp); INSERT_ATENOP_PATTERN(AtenArgmaxOp); INSERT_ATENOP_PATTERN(AtenPowTensorScalarOp); INSERT_ATENOP_PATTERN(AtenRsubScalarOp); INSERT_ATENOP_PATTERN(AtenConvolutionOp); INSERT_ATENOP_PATTERN(ValueTensorLiteralOp); INSERT_ATENOP_PATTERN(AtenReshapeOp); INSERT_ATENOP_PATTERN(AtenBatchNormOp); INSERT_ATENOP_PATTERN(AtenNativeLayerNormOp); INSERT_ATENOP_PATTERN(AtenFlattenUsingIntsOp); INSERT_ATENOP_PATTERN(AtenUnflattenIntOp); INSERT_ATENOP_PATTERN(AtenPermuteOp); INSERT_ATENOP_PATTERN(AtenLog2Op); INSERT_ATENOP_PATTERN(AtenThresholdOp); INSERT_ATENOP_PATTERN(AtenUnsqueezeOp); INSERT_ATENOP_PATTERN(AtenContiguousOp); INSERT_ATENOP_PATTERN(AtenDropoutOp); INSERT_ATENOP_PATTERN(AtenViewOp); INSERT_ATENOP_PATTERN(AtenGeluOp); INSERT_ATENOP_PATTERN(AtenGeluBackwardOp); INSERT_ATENOP_PATTERN(AtenEmbeddingOp); INSERT_ATENOP_PATTERN(AtenTransposeIntOp); INSERT_ATENOP_PATTERN(AtenMaxDimOp); INSERT_ATENOP_PATTERN(AtenSliceTensorOp); INSERT_ATENOP_PATTERN(AtenBroadcastToOp); INSERT_ATENOP_PATTERN(AtenGatherOp); INSERT_ATENOP_PATTERN(Aten_IndexPutImplOp); INSERT_ATENOP_PATTERN(AtenIndexTensorHackedTwinOp); INSERT_ATENOP_PATTERN(AtenAbsOp); INSERT_ATENOP_PATTERN(AtenWhereSelfOp); INSERT_ATENOP_PATTERN(AtenLeTensorOp); INSERT_ATENOP_PATTERN(AtenClampOp); INSERT_ATENOP_PATTERN(AtenArangeStartStepOp); INSERT_ATENOP_PATTERN(PrimNumToTensorScalarOp); INSERT_ATENOP_PATTERN(AtenCopyOp); INSERT_ATENOP_PATTERN(AtenToDtypeOp); INSERT_ATENOP_PATTERN(AtenConstantPadNdOp); INSERT_ATENOP_PATTERN(AtenRemainderScalarOp); INSERT_ATENOP_PATTERN(AtenCatOp); INSERT_ATENOP_PATTERN(AtenSqrtOp); #undef INSERT_ATENOP_PATTERN #define INSERT_CLONE_ATENOP_PATTERN(AtenOp) \ target.addIllegalOp(); \ patterns.add>(typeConverter, context); INSERT_CLONE_ATENOP_PATTERN(AtenCloneOp); #undef INSERT_CLONE_ATENOP_PATTERN if (failed(applyPartialConversion(getOperation(), target, std::move(patterns)))) return signalPassFailure(); } }; } // namespace std::unique_ptr> mlir::torch::createConvertTorchToTosaPass() { return std::make_unique(); }