# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception from PIL import Image import requests import torch import torchvision.models as models from torchvision import transforms from torch_mlir.dialects.torch.importer.jit_ir import ClassAnnotator, ModuleBuilder import npcomp from npcomp.passmanager import PassManager from npcomp.compiler.pytorch.backend import refbackend from npcomp.compiler.utils import logging mb = ModuleBuilder() def load_and_preprocess_image(url: str): headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36' } img = Image.open(requests.get(url, headers=headers, stream=True).raw).convert("RGB") # preprocessing pipeline preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) img_preprocessed = preprocess(img) return torch.unsqueeze(img_preprocessed, 0) def load_labels(): classes_text = requests.get( "https://raw.githubusercontent.com/cathyzhyi/ml-data/main/imagenet-classes.txt", stream=True, ).text labels = [line.strip() for line in classes_text.splitlines()] return labels def top3_possibilities(res): _, indexes = torch.sort(res, descending=True) percentage = torch.nn.functional.softmax(res, dim=1)[0] * 100 top3 = [(labels[idx], percentage[idx].item()) for idx in indexes[0][:3]] return top3 def predictions(torch_func, jit_func, img, labels): golden_prediction = top3_possibilities(torch_func(img)) print("PyTorch prediction") print(golden_prediction) prediction = top3_possibilities(torch.from_numpy(jit_func(img.numpy()))) print("NPCOMP prediction") print(prediction) class ResNet18Module(torch.nn.Module): def __init__(self): super().__init__() self.resnet = models.resnet18(pretrained=True) self.train(False) def forward(self, img): return self.resnet.forward(img) class TestModule(torch.nn.Module): def __init__(self): super().__init__() self.s = ResNet18Module() def forward(self, x): return self.s.forward(x) image_url = ( "https://upload.wikimedia.org/wikipedia/commons/2/26/YellowLabradorLooking_new.jpg" ) import sys print("load image from " + image_url, file=sys.stderr) img = load_and_preprocess_image(image_url) labels = load_labels() test_module = TestModule() class_annotator = ClassAnnotator() recursivescriptmodule = torch.jit.script(test_module) torch.jit.save(recursivescriptmodule, "/tmp/foo.pt") class_annotator.exportNone(recursivescriptmodule._c._type()) class_annotator.exportPath(recursivescriptmodule._c._type(), ["forward"]) class_annotator.annotateArgs( recursivescriptmodule._c._type(), ["forward"], [ None, ([-1, -1, -1, -1], torch.float32, True), ], ) # TODO: Automatically handle unpacking Python class RecursiveScriptModule into the underlying ScriptModule. mb.import_module(recursivescriptmodule._c, class_annotator) backend = refbackend.RefBackendNpcompBackend() with npcomp.ir.Context() as ctx: npcomp.register_all_dialects(ctx) lowered_mlir_module = npcomp.ir.Module.parse(str(mb.module)) pm = PassManager.parse('torchscript-to-npcomp-backend-pipeline') pm.run(lowered_mlir_module) compiled = backend.compile(lowered_mlir_module) jit_module = backend.load(compiled) predictions(test_module.forward, jit_module.forward, img, labels)