//===- LowerToBackendContract.cpp --------------------------------*- C++-*-===// // // This file is licensed under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // Also available under a BSD-style license. See LICENSE. // //===----------------------------------------------------------------------===// #include "PassDetail.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/Pass/PassManager.h" #include "mlir/Transforms/DialectConversion.h" #include "mlir/Transforms/Passes.h" #include "torch-mlir/Dialect/Torch/IR/TorchDialect.h" #include "torch-mlir/Dialect/Torch/IR/TorchOps.h" #include "torch-mlir/Dialect/Torch/Transforms/Passes.h" #include "torch-mlir/Dialect/Torch/Utils/Utils.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "torch-lower-to-backend-contract" using namespace mlir; using namespace mlir::torch; using namespace mlir::torch::Torch; //===----------------------------------------------------------------------===// // Checking the backend contract. //===----------------------------------------------------------------------===// static void markDecomposedOpsAsIllegal(MLIRContext *context, ConversionTarget &target, ArrayRef backendLegalOps); static LogicalResult checkType(Operation *op, Type type, bool actuallyEmitDiagnostics) { // Allow various scalar types that backends are expected to be able to handle. if (type.isa()) return success(); // Backends are not expected to support dynamic computations on these types, // but they frequently appear as parameters to ops which backends // can statically pattern match and eliminate from the program. // For example, a tensor operand might be optional, and the backend // will pattern-match statically whether it is passed as a tensor or None. if (type.isa()) return success(); // We blanket prohibit non-value-semantic tensors. // All of our backends are currently based on value-semantic tensors, so // we consider it our responsibility to lower all non-value-semantic tensors // to value-semantic tensors. if (type.isa()) { if (actuallyEmitDiagnostics) { return op ->emitError("unsupported by backend contract: non-value tensor type") .attachNote() .append("this is likely due to a missing case in the " "MaximizeValueSemantics pass"); } else { return failure(); } } // For value-semantic tensors, we require at least a known rank and dtype. // We are not aware of a situation where our backends can handle an unranked // tensor type or a tensor with a dynamic dtype. // // There are somewhat fundamental reasons for this. In particular, the problem // of unranked codegen is completely different from the problem of ranked // codegen (since ranked corresponds to a fixed loop nest structure). For all // codegen systems we are aware of, the program must be reduced to operate // on ranked tensors at some point in compilation, and we are not aware of // any backend with a general solution to this problem before it reaches // codegen. So we consider it our responsibility to eliminate unranked tensor // from the program. // // We aren't aware of any backend with any infrastructure to represent dynamic // dtypes, let alone transform and optimize them. Additionally, it is unlikely // that any backend, even if it supports dynamic dtypes in some form, will // have an sufficiently rich system for representing PyTorch type promotion // rules. So we consider it our responsibility to ensure that all dtypes are // statically known. if (auto tensorType = type.dyn_cast()) { if (!tensorType.hasSizes()) { if (actuallyEmitDiagnostics) { return op ->emitError( "unsupported by backend contract: tensor with unknown rank") .attachNote() .append("this is likely due to a missing transfer function " "in abstract_interp_lib_gen.py"); } else { return failure(); } } if (!tensorType.hasDtype()) { if (actuallyEmitDiagnostics) { return op ->emitError( "unsupported by backend contract: tensor with unknown dtype") .attachNote() .append("this is likely due to a missing case in RefineTypes"); } else { return failure(); } } return success(); } // Optional types are also in the category of types which we don't expect // backends to dynamically compute with, but they can be pattern matched // in many cases that are practically necessary. if (auto optionalType = type.dyn_cast()) { // TODO: Be stricter about tensor types. // See comment below for ListType. if (optionalType.getContainedType().isa()) return success(); return checkType(op, optionalType.getContainedType(), actuallyEmitDiagnostics); } // List types are also in the category of types which we don't expect // backends to dynamically compute with, but they can be pattern matched // in many cases that are practically necessary. For example, the // strides of a convolution op are represented as a list. if (auto listType = type.dyn_cast()) { // TODO: Be stricter about tensor types. // For the moment, there are cases (such as for torch.cat) where we end // up with `!torch.list` which doesn't have shape or dtype in // the contained type information. Somehow this slips through and works. // We should be stricter about this and properly infer the contained type // and shape. if (listType.getContainedType().isa()) return success(); return checkType(op, listType.getContainedType(), actuallyEmitDiagnostics); } // Tuple types are also in the category of types which we don't expect // backends to dynamically compute with, but they can be pattern matched // in many cases that are practically necessary. if (auto tupleType = type.dyn_cast()) { for (auto containedType : tupleType.getContainedTypes()) { if (failed(checkType(op, containedType, actuallyEmitDiagnostics))) return failure(); } return success(); } // Unsupported type. if (actuallyEmitDiagnostics) { return op->emitError("unsupported by backend contract: type ") << type; } else { return failure(); } } static LogicalResult checkOpIsBackendLegal(Operation *op, const ConversionTarget &target, bool actuallyEmitDiagnostics) { if (target.isLegal(op)) return success(); if (actuallyEmitDiagnostics) { return op->emitError("found an op that was marked as backend illegal") .attachNote() .append("this is likely due to DecomposeComplexOps being unable to " "decompose this op"); } else { return failure(); } } static bool satisfiesBackendContract(ModuleOp module, const ConversionTarget &target, bool actuallyEmitDiagnostics = false) { // We do not permit `torch.global_slot`'s in the backend contract, since // support for them is not widespread, and this does not align with PyTorch's // more tracing-based direction. // // We just check for the GlobalSlotModuleInitializerOp since its verifier // ensures that the set of global slots matches those initialized by the // module initializer. auto walkResult0 = module.walk([&](Torch::GlobalSlotModuleInitializerOp op) { if (actuallyEmitDiagnostics) { // Report the error on the terminator to avoid dumping the whole // initializer itself, which can have pages of ops in it. op.getBody() ->getTerminator() ->emitError("unsupported by backend contract: module initializers") .attachNote() .append("this is likely due to InlineGlobalSlots being unable to " "inline a global slot"); } return WalkResult::interrupt(); }); if (walkResult0.wasInterrupted()) return false; // Check all the types of all Value's in the program and the legality of all // the ops. // // A pre-order walk gives a more intuitive "first error". // TODO: Should we report more than the first error? // How do we avoid making it too spammy? auto walkResult1 = module.walk([&](Block *block) { for (BlockArgument arg : block->getArguments()) if (failed(checkType(block->getParentOp(), arg.getType(), actuallyEmitDiagnostics))) { return WalkResult::interrupt(); } for (Operation &op : *block) { if (failed(checkOpIsBackendLegal(&op, target, actuallyEmitDiagnostics))) return WalkResult::interrupt(); for (OpResult result : op.getResults()) if (failed(checkType(&op, result.getType(), actuallyEmitDiagnostics))) return WalkResult::interrupt(); } return WalkResult::advance(); }); if (walkResult1.wasInterrupted()) return false; return true; } // Explicitly set ops and dialects allowed and not allowed in backend contract. static ConversionTarget getBackendContractTarget(MLIRContext *context, bool decompose, ArrayRef backendLegalOps) { ConversionTarget target(*context); target.addLegalDialect(); if (decompose) markDecomposedOpsAsIllegal(context, target, backendLegalOps); return target; } namespace { class LowerToBackendContractPass : public LowerToBackendContractBase { public: LowerToBackendContractPass() = default; LowerToBackendContractPass(int maxIterations, bool decompose, ArrayRef backendLegalOps) { this->maxIterations = maxIterations; this->decompose = decompose; this->backendLegalOps = backendLegalOps; } void runOnOperation() override { ModuleOp module = getOperation(); MLIRContext *context = &getContext(); ConversionTarget target = getBackendContractTarget(context, decompose, backendLegalOps); OpPassManager pm(module.getOperationName()); TorchLoweringPipelineOptions options; options.decompose = decompose; options.backendLegalOps = backendLegalOps; createTorchSimplificationPipeline(pm, options); int i = 0; do { if (i++ == maxIterations) { LLVM_DEBUG({ llvm::dbgs() << "LowerToBackendContractPass: " << "failed to satisfy backend contract after " << maxIterations << " iterations of the simplification pipeline\n"; }); // Show the diagnostics. (void)satisfiesBackendContract(module, target, /*actuallyEmitDiagnostics=*/true); return signalPassFailure(); } if (failed(runPipeline(pm, module))) return signalPassFailure(); } while (!satisfiesBackendContract(module, target)); LLVM_DEBUG({ llvm::dbgs() << "LowerToBackendContractPass: " << "succeeded after " << i << " iterations of the simplification pipeline\n"; }); } }; class VerifyBackendContractPass : public VerifyBackendContractBase { public: VerifyBackendContractPass() = default; VerifyBackendContractPass(bool decompose, ArrayRef backendLegalOps) { this->decompose = decompose; this->backendLegalOps = backendLegalOps; } void runOnOperation() override { MLIRContext *context = &getContext(); ConversionTarget target = getBackendContractTarget(context, decompose, backendLegalOps); if (!satisfiesBackendContract(getOperation(), target, /*actuallyEmitDiagnostics=*/true)) { return signalPassFailure(); } } }; } // namespace std::unique_ptr> mlir::torch::Torch::createLowerToBackendContractPass( int maxIterations, bool decompose, ArrayRef backendLegalOps) { return std::make_unique(maxIterations, decompose, backendLegalOps); } std::unique_ptr> mlir::torch::Torch::createVerifyBackendContractPass( bool decompose, ArrayRef backendLegalOps) { return std::make_unique(decompose, backendLegalOps); } // The backend contract guarantees that ops with decompositions available will // be decomposed. The only way to have an op reach the backend contract without // getting decomposed is by having the user explicitly specify that op in the // `backendLegalOps` argument to the `LowerToBackendContractPass`. Therefore, // here we mark as illegal all ops with decompositions except for those in // `backendLegalOps`. // // The legality check takes place here instead of in the `DecomposeComplexOps` // pass for two reasons: // 1. Makes sure the `DecomposeComplexOps` pass always succeeds, allowing it to // run multiple times. This is needed for graphs where static information such // as dtypes and shapes takes multiple iterations to propagate through the // entire graph. `DecomposeComplexOps` pass failing would cause the entire // `LowerToBackendContractPass` to fail // 2. Makes the legality requirements in the backend contract for ops with // decompositions explicit in this file static void markDecomposedOpsAsIllegal(MLIRContext *context, ConversionTarget &target, ArrayRef backendLegalOps) { target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addDynamicallyLegalOp([](AtenMatmulOp op) { Optional lhsRank = getTensorRank(op.getSelf()); Optional rhsRank = getTensorRank(op.getOther()); if (!lhsRank || !rhsRank) return false; // Make aten.matmul legal if the following condition is satisfied. return (*lhsRank != 2 || *rhsRank != 2) && (*lhsRank != 3 || *rhsRank != 3); }); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); target.addIllegalOp(); for (std::string opName : backendLegalOps) { target.addLegalOp(OperationName(opName, context)); } }