//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // Also available under a BSD-style license. See LICENSE. // //===----------------------------------------------------------------------===// #include "torch-mlir/Conversion/TorchToLinalg/TorchToLinalg.h" #include "../PassDetail.h" #include "PopulatePatterns.h" #include "Utils.h" #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" #include "mlir/Dialect/Linalg/IR/Linalg.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/Matchers.h" #include "torch-mlir/Conversion/Utils/Utils.h" #include "torch-mlir/Dialect/Torch/IR/TorchDialect.h" #include "torch-mlir/Dialect/Torch/IR/TorchOps.h" #include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h" #include "torch-mlir/Dialect/Torch/Utils/Utils.h" using namespace mlir; using namespace mlir::torch; using namespace mlir::torch::Torch; namespace { class ConvertAtenMmOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenMmOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Location loc = op->getLoc(); Value lhs = adaptor.self(); Value rhs = adaptor.mat2(); // A user can write an errorneous program where `aten.mm` is in fact called // with operands of invalid rank or dtype. We cannot convert to linalg in // this case or we will get a verifier error, which corresponds to breaking // of *internal* compiler invariants, and for a user manifests as a compiler // crash in the worst case (such as we try to canonicalize/fold/print the // invalid op before the verifier gets to see it -- also release builds of a // mature compiler usually have the verifier turned off for compile time // reasons). // // The compiler cannot crash even if the user wrote an erroneous program! if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); if (lhs.getType().cast().getRank() != 2 || rhs.getType().cast().getRank() != 2) { return rewriter.notifyMatchFailure( op, "expected both operands to aten.mm to be rank 2"); } Value lhsDim0 = rewriter.create(loc, lhs, 0); Value lhsDim1 = rewriter.create(loc, lhs, 1); Value rhsDim0 = rewriter.create(loc, rhs, 0); Value rhsDim1 = rewriter.create(loc, rhs, 1); Value contractingDimEqual = rewriter.create( loc, arith::CmpIPredicate::eq, lhsDim1, rhsDim0); rewriter.create( loc, contractingDimEqual, rewriter.getStringAttr( "mismatching contracting dimension for torch.aten.mm")); Type newResultType = getTypeConverter()->convertType(op.getType()); Type elementType = newResultType.cast().getElementType(); Value initTensor = rewriter.create( loc, ValueRange{lhsDim0, rhsDim1}, elementType); Value c0 = rewriter.create( loc, FloatAttr::get(elementType, 0.0)); Value zeroFill = rewriter.create(loc, c0, initTensor).getResult(0); Value matmul = rewriter .create(loc, zeroFill.getType(), ValueRange{lhs, rhs}, zeroFill) .getResult(0); // When constructed with just dynamic sizes, InitTensorOp will have a result // type which has all `?`'s for dimensions, which might not be the result // type of `op`. The constraints on later linalg ops means that the result // of the MatmulOp will have this type too. So cast it to the desired type // so that in the end we have the original result type. rewriter.replaceOpWithNewOp(op, newResultType, matmul); return success(); } }; } // namespace namespace { class ConvertAtenFlipOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenFlipOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Location loc = op->getLoc(); MLIRContext *context = op.getContext(); Value self = adaptor.self(); auto selfRank = adaptor.self().getType().cast().getRank(); Type elementType = adaptor.self().getType().cast().getElementType(); Value c1 = rewriter.create(loc, rewriter.getIndexAttr(1)); SmallVector axis; if (!matchPattern(adaptor.dims(), m_TorchConstantIntList(axis))) return rewriter.notifyMatchFailure(op, "only constant dim lists supported"); // Only used to calculate flipped values, i.e. those on the flip axes. Other // dims won't be used. SmallVector dims = getTensorSizes(rewriter, loc, self); for (auto flipDim : axis) dims[flipDim] = rewriter.create(loc, dims[flipDim], c1); Value initTensor = createZeroInitTensor( rewriter, loc, getTensorSizes(rewriter, loc, self), elementType); SmallVector iteratorTypes(selfRank, "parallel"); SmallVector indexingMaps( 2, AffineMap::getMultiDimIdentityMap(selfRank, context)); Value flipped = rewriter .create( loc, self.getType(), self, initTensor, indexingMaps, iteratorTypes, [&](OpBuilder &b, Location loc, ValueRange args) { SmallVector indices; for (auto i = 0; i < selfRank; i++) indices.push_back(b.create(loc, i)); for (auto flipDim : axis) { indices[flipDim] = b.create( loc, dims[flipDim], indices[flipDim]); } Value res = b.create(loc, self, indices) .getResult(); b.create(loc, res); }) .getResult(0); rewriter.replaceOpWithNewOp(op, self.getType(), flipped); return success(); } }; } // namespace namespace { class ConvertAtenMatmulOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenMatmulOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Location loc = op->getLoc(); Value lhs = adaptor.self(); Value rhs = adaptor.other(); if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); auto lhsType = lhs.getType().cast(); auto rhsType = rhs.getType().cast(); // Get the rank of both matrix. unsigned lhsRank = lhsType.getRank(); unsigned rhsRank = rhsType.getRank(); Type newResultType = getTypeConverter()->convertType(op.getType()); auto resultType = newResultType.cast(); Type elementType = resultType.getElementType(); // The different cases of torch_matmul op is mentioned here: // https://pytorch.org/docs/stable/generated/torch.matmul.html // First Case: Dot Product. if (lhsRank == 1 && rhsRank == 1) { Value lhsDim0 = getDimOp(rewriter, loc, lhs, 0); Value rhsDim0 = getDimOp(rewriter, loc, rhs, 0); checkDimEqualHelper(rewriter, loc, lhsDim0, rhsDim0); Value zeroTensor = createZeroInitTensor(rewriter, loc, {}, elementType); Value dotProd = rewriter .create(loc, zeroTensor.getType(), ValueRange{lhs, rhs}, zeroTensor) .getResult(0); rewriter.replaceOpWithNewOp(op, newResultType, dotProd); return success(); } // Second Case: Vec-Mat Multiplication. if (lhsRank == 1 && rhsRank == 2) { Value lhsDim0 = getDimOp(rewriter, loc, lhs, 0); Value rhsDim0 = getDimOp(rewriter, loc, rhs, 0); Value rhsDim1 = getDimOp(rewriter, loc, rhs, 1); checkDimEqualHelper(rewriter, loc, lhsDim0, rhsDim0); Value zeroTensor = createZeroInitTensor(rewriter, loc, ValueRange{rhsDim1}, elementType); Value matmul = rewriter .create(loc, zeroTensor.getType(), ValueRange{lhs, rhs}, zeroTensor) .getResult(0); rewriter.replaceOpWithNewOp(op, newResultType, matmul); return success(); } // Third Case: Matrix-Vec Multiplication. if (lhsRank == 2 && rhsRank == 1) { Value lhsDim0 = getDimOp(rewriter, loc, lhs, 0); Value lhsDim1 = getDimOp(rewriter, loc, lhs, 1); Value rhsDim0 = getDimOp(rewriter, loc, rhs, 0); checkDimEqualHelper(rewriter, loc, lhsDim1, rhsDim0); Value zeroTensor = createZeroInitTensor(rewriter, loc, ValueRange{lhsDim0}, elementType); Value matmul = rewriter .create(loc, zeroTensor.getType(), ValueRange{lhs, rhs}, zeroTensor) .getResult(0); rewriter.replaceOpWithNewOp(op, newResultType, matmul); return success(); } // Fourth Case: Batch-Matrix Multiplication. // TODO: Handle batch matrix multiplication when one of the matrix is unity // rank and the other has batch dimension. if (lhsRank > 1 && rhsRank > 1) { unsigned maxRank = std::max(lhsRank, rhsRank); unsigned minRank = std::min(lhsRank, rhsRank); unsigned batchRank = maxRank - 2; // At least one of the matrix must have rank greater than 2. if (batchRank <= 0) { return rewriter.notifyMatchFailure(op, "expected batch dimensions"); } // The `broadcastedBatchShape` contains batch dimensions of the resultant // matrix. SmallVector broadcastedBatchShape(batchRank); Value maxRankMatrix = (lhsRank > rhsRank) ? lhs : rhs; Value maxDim; // Compute broadcasted batch dimensions if the batch dimensions of // the matrices are broadcastable. for (unsigned i = 1; i <= batchRank; i++) { if (i <= minRank - 2) { Value lhsDim = getDimOp(rewriter, loc, lhs, lhsRank - 2 - i); Value rhsDim = getDimOp(rewriter, loc, rhs, rhsRank - 2 - i); maxDim = rewriter.createOrFold(loc, lhsDim, rhsDim); } else { maxDim = getDimOp(rewriter, loc, maxRankMatrix, maxRank - 2 - i); } broadcastedBatchShape[batchRank - i] = maxDim; } Value lhsDim0 = getDimOp(rewriter, loc, lhs, lhsRank - 2); Value lhsDim1 = getDimOp(rewriter, loc, lhs, lhsRank - 1); Value rhsDim0 = getDimOp(rewriter, loc, rhs, rhsRank - 2); Value rhsDim1 = getDimOp(rewriter, loc, rhs, rhsRank - 1); checkDimEqualHelper(rewriter, loc, lhsDim1, rhsDim0); // Compute broadcasted shape of both the matrices in integer format. SmallVector lhsBroadcastToShape(broadcastedBatchShape); lhsBroadcastToShape.push_back(lhsDim0); lhsBroadcastToShape.push_back(lhsDim1); SmallVector rhsBroadcastToShape(broadcastedBatchShape); rhsBroadcastToShape.push_back(rhsDim0); rhsBroadcastToShape.push_back(rhsDim1); for (unsigned i = 0; i < maxRank; i++) { lhsBroadcastToShape[i] = castIndexToInt64(rewriter, loc, lhsBroadcastToShape[i]); rhsBroadcastToShape[i] = castIndexToInt64(rewriter, loc, rhsBroadcastToShape[i]); } // Broadcast the batch dimensions of both the matrices. Value broadcastedLhs, broadcastedRhs; if (failed(torch_to_linalg::broadcastToGivenShape( op, rewriter, lhs, lhsBroadcastToShape, broadcastedLhs))) { return rewriter.notifyMatchFailure( op, "unable to perform broadcast operation"); } if (failed(torch_to_linalg::broadcastToGivenShape( op, rewriter, rhs, rhsBroadcastToShape, broadcastedRhs))) { return rewriter.notifyMatchFailure( op, "unable to perform broadcast operation"); } // Check if the result of the matrix multiplication has more than one // dynamic batch dimensions. ArrayRef batchDimsInt = resultType.getShape().drop_back(2); bool multipleDynamicBatchDims = llvm::count(batchDimsInt, kUnknownSize) > 1; // TODO: Lowering to `linalg.BatchMatmul` is only possible when there is // at most one dynamic batch dimension due to limited support of the // `tensor.ExpandShape` op. if (!multipleDynamicBatchDims) { // Collapse the batch dimensions into one dimension. The resultant rank // will always be 3. SmallVector reassociation(3); for (unsigned i = 0, j = 0; i < maxRank; i++) { if (i >= batchRank) j++; reassociation[j].push_back(i); } Value collapsedLhs = rewriter.create( op->getLoc(), broadcastedLhs, reassociation); Value collapsedRhs = rewriter.create( op->getLoc(), broadcastedRhs, reassociation); // Compute the result shape after collapsing the batch dimensions. SmallVector collapsedResultShape; collapsedResultShape.push_back(broadcastedBatchShape[0]); for (unsigned i = 1; i < batchRank; i++) { collapsedResultShape[0] = rewriter.createOrFold( loc, collapsedResultShape[0], broadcastedBatchShape[i]); } collapsedResultShape.push_back(lhsDim0); collapsedResultShape.push_back(rhsDim1); SmallVector updatedCollapseResultShape = getAsOpFoldResult(collapsedResultShape); Value initTensor = rewriter.create( loc, updatedCollapseResultShape, elementType); Value c0 = rewriter.create( loc, rewriter.getZeroAttr(elementType)); Value zeroTensor = rewriter.create(loc, c0, initTensor).getResult(0); Value batchMatMul = rewriter .create( loc, zeroTensor.getType(), ValueRange{collapsedLhs, collapsedRhs}, zeroTensor) .getResult(0); Value expandResult = rewriter.create( loc, resultType, batchMatMul, reassociation); rewriter.replaceOpWithNewOp(op, newResultType, expandResult); return success(); } SmallVector lhsExpr; SmallVector rhsExpr; SmallVector outExpr; SmallVector iteratorTypes; for (unsigned i = 0; i < batchRank; i++) { lhsExpr.push_back(rewriter.getAffineDimExpr(i)); rhsExpr.push_back(rewriter.getAffineDimExpr(i)); outExpr.push_back(rewriter.getAffineDimExpr(i)); iteratorTypes.push_back(getParallelIteratorTypeName()); } lhsExpr.insert(lhsExpr.end(), {rewriter.getAffineDimExpr(batchRank), rewriter.getAffineDimExpr(batchRank + 1)}); rhsExpr.insert(rhsExpr.end(), {rewriter.getAffineDimExpr(batchRank + 1), rewriter.getAffineDimExpr(batchRank + 2)}); outExpr.insert(outExpr.end(), {rewriter.getAffineDimExpr(batchRank), rewriter.getAffineDimExpr(batchRank + 2)}); SmallVector resultShape(broadcastedBatchShape); resultShape.insert(resultShape.end(), {lhsDim0, rhsDim1}); Value zeroTensor = createZeroInitTensor(rewriter, loc, resultShape, elementType); auto indexingMaps = AffineMap::inferFromExprList({lhsExpr, rhsExpr, outExpr}); iteratorTypes.insert(iteratorTypes.end(), {"parallel", "reduction", "parallel"}); Value finalRes = rewriter .create( loc, zeroTensor.getType(), ValueRange{broadcastedLhs, broadcastedRhs}, zeroTensor, /*indexingMaps=*/indexingMaps, /*iteratorTypes=*/iteratorTypes, [&](OpBuilder &b, Location loc, ValueRange args) { Value l = args[0], r = args[1], res = args[2]; Value mul = b.create(loc, l, r); Value add = b.create(loc, mul, res); b.create(loc, add); }) .getResult(0); rewriter.replaceOpWithNewOp(op, newResultType, finalRes); return success(); } return failure(); } }; } // namespace namespace { class ConvertAtenBmmOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenBmmOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); Location loc = op->getLoc(); Value lhs = adaptor.self(); Value rhs = adaptor.mat2(); RankedTensorType lhsType = lhs.getType().cast(); RankedTensorType rhsType = rhs.getType().cast(); if (lhsType.getRank() != 3 || rhsType.getRank() != 3) { return rewriter.notifyMatchFailure( op, "expected both operands to aten.bmm to be rank 3"); } if (!lhsType.getElementType().isa() || lhsType.getElementType() != rhsType.getElementType()) return op.emitError( "unimplemented: non floating point operands or operands of " "different types"); Value lhsDim0 = getDimOp(rewriter, loc, lhs, 0); Value lhsDim1 = getDimOp(rewriter, loc, lhs, 1); Value lhsDim2 = getDimOp(rewriter, loc, lhs, 2); Value rhsDim0 = getDimOp(rewriter, loc, rhs, 0); Value rhsDim1 = getDimOp(rewriter, loc, rhs, 1); Value rhsDim2 = getDimOp(rewriter, loc, rhs, 2); // Check the batch numbers are equal. checkDimEqualHelper(rewriter, loc, lhsDim0, rhsDim0); // Check the matrixs shapes are valid for mulplication. checkDimEqualHelper(rewriter, loc, lhsDim2, rhsDim1); Type newResultType = getTypeConverter()->convertType(op.getType()); Type elementType = newResultType.cast().getElementType(); Value initTensor0 = createZeroInitTensor( rewriter, loc, ValueRange{lhsDim0, lhsDim1, rhsDim2}, elementType); Value bmm = rewriter .create(loc, initTensor0.getType(), ValueRange{lhs, rhs}, initTensor0) .getResult(0); rewriter.replaceOpWithNewOp(op, newResultType, bmm); return success(); } }; } // namespace namespace { // See comments at in convertMmOp and the heading for this section for general // considerations. This function needs to be auto-generated. class ConvertAtenLinearOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenLinearOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { MLIRContext *context = op->getContext(); Location loc = op->getLoc(); Value input = adaptor.input(); Value weight = adaptor.weight(); Value bias = adaptor.bias(); if (failed(verifyLinalgCompatibleTypes(op, rewriter))) return failure(); auto inputType = input.getType().cast(); auto weightType = weight.getType().cast(); if (inputType.getRank() != 2 && inputType.getRank() != 3) { return rewriter.notifyMatchFailure( op, "expected input to be rank 2 or rank 3"); } if (!bias.getType().isa()) { auto biasType = bias.getType().cast(); // Only handle the case of rank 2 `weight` for now. // TODO: Insert the appropriate reshape to collapse any leading dimensions. if (weightType.getRank() != 2 || biasType.getRank() != 1) { return rewriter.notifyMatchFailure( op, "expected weight to be rank 2 and bias to be rank 1"); } // TODO: Handle type promotion. What are ATen's promotion rules? if (inputType.getElementType() != weightType.getElementType() || inputType.getElementType() != biasType.getElementType()) { return rewriter.notifyMatchFailure(op, "unimplemented: type promotion"); } // TODO: We can handle a static size 1 here at some complexity cost, but the // dynamic case is not representable in linalg. We don't handle either for // now. Biases are generally statically shaped for most models (since for // inference they are constants, and for training they don't change shape // typically), so this is not too constraining. auto biasSize = bias.getType().cast().getShape()[0]; if (biasSize == 1 || biasSize == ShapedType::kDynamicSize) return rewriter.notifyMatchFailure( op, "unimplemented: size-1 broadcasting for aten::LinearOp"); } Value batchDim = nullptr; int restDim = 0; if (inputType.getRank() == 3) { batchDim = getDimOp(rewriter, loc, input, 0); restDim = 1; } Value inputDim0 = getDimOp(rewriter, loc, input, restDim + 0); Value inputDim1 = getDimOp(rewriter, loc, input, restDim + 1); Value weightDim0 = getDimOp(rewriter, loc, weight, 0); Value weightDim1 = getDimOp(rewriter, loc, weight, 1); Value contractingDimEqual = rewriter.create( loc, arith::CmpIPredicate::eq, inputDim1, weightDim1); rewriter.create( loc, contractingDimEqual, rewriter.getStringAttr( "mismatching contracting dimension for aten.linear")); if (!bias.getType().isa()) { Value biasDim0 = getDimOp(rewriter, loc, bias, 0); // Here we take advantage of ruling out the size-1 case above. // In the static-size-1 case, we will not emit this check at all. Value biasSizeCorrect = rewriter.create( loc, arith::CmpIPredicate::eq, weightDim0, biasDim0); rewriter.create( loc, biasSizeCorrect, rewriter.getStringAttr("mismatching bias size for aten.linear")); } Value initTensor; SmallVector broadcastIndexingMaps; Value transposedWeightInitTensor; if (inputType.getRank() > 2) { initTensor = rewriter.create( loc, ValueRange{batchDim, inputDim0, weightDim0}, inputType.getElementType()); transposedWeightInitTensor = rewriter.create( loc, ValueRange{batchDim, weightDim1, weightDim0}, weightType.getElementType()); broadcastIndexingMaps = { AffineMap::get( /*dimCount=*/inputType.getRank(), /*symbolCount=*/0, {rewriter.getAffineDimExpr(1 + restDim)}, context), rewriter.getMultiDimIdentityMap(inputType.getRank())}; } else { initTensor = rewriter.create( loc, ValueRange{inputDim0, weightDim0}, inputType.getElementType()); transposedWeightInitTensor = rewriter.create( loc, ValueRange{weightDim1, weightDim0}, weightType.getElementType()); broadcastIndexingMaps = { AffineMap::get( /*dimCount=*/inputType.getRank(), /*symbolCount=*/0, {rewriter.getAffineDimExpr(1)}, context), rewriter.getMultiDimIdentityMap(inputType.getRank())}; } SmallVector iteratorTypes(inputType.getRank(), "parallel"); Value broadcasted; if (!bias.getType().isa()) { broadcasted = rewriter .create( loc, initTensor.getType(), bias, initTensor, /*indexingMaps=*/broadcastIndexingMaps, /*iteratorTypes=*/iteratorTypes, [](OpBuilder &b, Location loc, ValueRange args) { b.create(loc, args[0]); }) .getResult(0); } else { Type elementType = input.getType().cast().getElementType(); Value c0float = rewriter.create( loc, FloatAttr::get(elementType, 0.0)); broadcasted = rewriter.create(loc, c0float, initTensor) .getResult(0); } // We need a matmul with dimension ordering (N, K) * (M, K), so transpose // the weights to fit into linalg::MatmulOp which is (N, K) * (K, M). // TODO: This whole aten.linear lowering should eventually be generated from // a single linalg ODS generator statement. Both the bias and matmul part. SmallVector transposeIndexingMaps = { AffineMap::get( /*dimCount=*/inputType.getRank(), /*symbolCount=*/0, {rewriter.getAffineDimExpr(1 + restDim), rewriter.getAffineDimExpr(0 + restDim)}, context), rewriter.getMultiDimIdentityMap(inputType.getRank())}; Value transposedWeights = rewriter .create( loc, transposedWeightInitTensor.getType(), weight, transposedWeightInitTensor, /*indexingMaps=*/transposeIndexingMaps, /*iteratorTypes=*/iteratorTypes, [](OpBuilder &b, Location loc, ValueRange args) { b.create(loc, args[0]); }) .getResult(0); Value matmul; if (batchDim) matmul = rewriter .create( loc, broadcasted.getType(), ValueRange{input, transposedWeights}, broadcasted) .getResult(0); else matmul = rewriter .create( loc, broadcasted.getType(), ValueRange{input, transposedWeights}, broadcasted) .getResult(0); Type newResultType = getTypeConverter()->convertType(op.getType()); rewriter.replaceOpWithNewOp(op, newResultType, matmul); return success(); } }; } // namespace namespace { class ConvertAtenConvolutionOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(AtenConvolutionOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Location loc = op->getLoc(); MLIRContext *context = op->getContext(); Value input = adaptor.input(); /* in form of N*C*H*W */ Value weight = adaptor.weight(); /* in form of F*C*H*W */ Type elementType = input.getType().cast().getElementType(); if (!elementType.isa()) return op.emitError("unimplemented: non-floating point type"); size_t inRank = input.getType().cast().getRank(); if (inRank != 4) return rewriter.notifyMatchFailure( op, "unimplemented: only 2D convolution currently supported"); Type intType = IntegerType::get(context, 64); auto castIndexToInt = [&](Value v) { return rewriter.create(loc, intType, v); }; SmallVector paddingInts; if (!matchPattern(op.padding(), m_TorchConstantIntList(paddingInts))) { return rewriter.notifyMatchFailure( op, "only support constant padding values"); } SmallVector strideInts; if (!matchPattern(op.stride(), m_TorchConstantIntList(strideInts))) return rewriter.notifyMatchFailure(op, "only support constant int strides"); SmallVector dilationInts; if (!matchPattern(op.dilation(), m_TorchConstantIntList(dilationInts))) return rewriter.notifyMatchFailure(op, "only support constant int dilations"); Value inBatch = getDimOp(rewriter, loc, input, 0); Value inChannels = getDimOp(rewriter, loc, input, 1); SmallVector inDims; for (size_t i = 2; i < inRank; i++) inDims.push_back(getDimOp(rewriter, loc, input, i)); Value weightBatch = getDimOp(rewriter, loc, weight, 0); Value weightChannels = getDimOp(rewriter, loc, weight, 1); SmallVector weightDims; for (size_t i = 2; i < inRank; i++) weightDims.push_back(getDimOp(rewriter, loc, weight, i)); // Guard unused values (transposed) bool transposed = true; if (!matchPattern(op.transposed(), m_TorchConstantBool(&transposed)) || transposed) return rewriter.notifyMatchFailure( op, "unimplemented: only non-transposed convolution supported"); // Checks for valid group size int64_t groupSize; if (!matchPattern(op.groups(), m_TorchConstantInt(&groupSize))) return rewriter.notifyMatchFailure(op, "only constant group size supported."); Value groups = castIntToIndex(rewriter, loc, adaptor.groups()); auto validate = [&](Value toValidate, std::string err) { Value c0 = rewriter.create(loc, rewriter.getIndexAttr(0)); Value inputValid = rewriter.create( loc, arith::CmpIPredicate::eq, c0, rewriter.create(loc, toValidate, groups)); rewriter.create(loc, inputValid, rewriter.getStringAttr(err)); }; validate(inChannels, "invalid: groups must divide input channel size evenly."); validate(weightBatch, "invalid: groups must divide weight batch size evenly."); SmallVector paddingIntValues = getAsConstantIntValues(rewriter, loc, paddingInts); SmallVector dilationIntValues = getAsConstantIntValues(rewriter, loc, dilationInts); SmallVector strideIntValues = getAsConstantIntValues(rewriter, loc, strideInts); SmallVector outDims{inBatch, weightBatch}; for (size_t i = 0; i < inRank - 2; i++) outDims.push_back(torch_to_linalg::getOutputDimForConvOps( rewriter, loc, inDims[i], paddingIntValues[i], dilationIntValues[i], castIndexToInt(weightDims[i]), strideIntValues[i])); Value initTensor = rewriter.create(loc, outDims, elementType); Value bias = adaptor.bias(); Value outputTensor; if (bias.getType().isa()) { Value c0float = rewriter.create( loc, FloatAttr::get(elementType, 0.0)); outputTensor = rewriter.create(loc, c0float, initTensor) .getResult(0); } else { auto biasType = bias.getType().cast(); if (biasType.getRank() != 1) return rewriter.notifyMatchFailure(op, "expect bias to be rank 1"); if (elementType != biasType.getElementType()) return rewriter.notifyMatchFailure(op, "unimplemented: type promotion"); auto resultRank = initTensor.getType().cast().getRank(); SmallVector indexingMaps = { // bias is used to initialize the channels - dimension 1 of output AffineMap::get(/*dimCount=*/resultRank, /*symbolCount=*/0, rewriter.getAffineDimExpr(1), context), rewriter.getMultiDimIdentityMap(resultRank)}; SmallVector iteratorTypes(resultRank, getParallelIteratorTypeName()); outputTensor = rewriter .create( loc, initTensor.getType(), bias, initTensor, indexingMaps, iteratorTypes, [](OpBuilder &b, Location loc, ValueRange args) { b.create(loc, args[0]); }) .getResult(0); } auto stridesAttr = rewriter.getI64VectorAttr(strideInts); auto dilationAttr = rewriter.getI64VectorAttr(dilationInts); Value inputStride = rewriter.create(loc, inChannels, groups); Value weightStride = rewriter.create(loc, weightBatch, groups); SmallVector zeroOffsets(inRank, rewriter.create( loc, rewriter.getIndexAttr(0))); SmallVector unitStrides(inRank, rewriter.create( loc, rewriter.getIndexAttr(1))); SmallVector outDimSlice(outDims); outDimSlice[1] = weightStride; SmallVector inputSliceSizes{inBatch, inputStride}; inputSliceSizes.append(inDims); SmallVector weightSliceSizes{weightStride, weightChannels}; weightSliceSizes.append(weightDims); // Pad the input tensor according to padding. SmallVector paddingIncludingNC = {0, 0}; paddingIncludingNC.append(paddingInts); // Pad inputSlice Value paddedInput = torch_to_linalg::getZeroPaddedTensor( op, rewriter, input, paddingIncludingNC); Value conv; if (groupSize == 1) { // TODO: add 1D and 3D case conv = rewriter .create( loc, outputTensor.getType(), ValueRange{paddedInput, weight}, outputTensor, stridesAttr, dilationAttr) .getResult(0); } else { // Special depthwise case auto inShape = input.getType().cast().getShape(); auto weightShape = weight.getType().cast().getShape(); if (weightShape[0] != kUnknownSize && inShape[1] == groupSize && weightShape[0] % inShape[1] == 0 && weightShape[1] == 1) { // Collapse weight shape SmallVector collapsedDims = {{0, 1}, {2}, {3}}; SmallVector collapsedShape{ (weightShape[0] == kUnknownSize ? kUnknownSize : weightShape[0] * weightShape[1]), weightShape[2], weightShape[3]}; Type collapsedType = RankedTensorType::get(collapsedShape, elementType); Value collapsedWeight = rewriter.create( loc, collapsedType, weight, collapsedDims); conv = rewriter .create( loc, outputTensor.getType(), ValueRange{paddedInput, collapsedWeight}, outputTensor, stridesAttr, dilationAttr) .getResult(0); Type newResultType = getTypeConverter()->convertType(op.getType()); rewriter.replaceOpWithNewOp(op, newResultType, conv); return success(); } // Grouped case, use the grouped conv linalg op auto expandGroups = [&](Value tensor, size_t dim) { auto inType = tensor.getType().cast(); auto inShape = inType.getShape(); SmallVector outShape; for (auto i = 0; i < (long)inShape.size(); i++) { if (i == 1) { outShape.push_back(groupSize); } if (i == (long)dim) { outShape.push_back(inShape[i] == kUnknownSize ? kUnknownSize : inShape[i] / groupSize); } else { outShape.push_back(inShape[i]); } } SmallVector indices; for (auto i = 0; i <= (long)inShape.size(); i++) { if (i == (long)dim) { indices.push_back({i, ++i}); continue; } indices.push_back({i}); } auto retType = inType.clone(outShape); return rewriter.create(loc, retType, tensor, indices); }; auto expandWeight = [&](Value tensor) { auto inType = tensor.getType().cast(); auto inShape = inType.getShape(); SmallVector outShape{ groupSize, (inShape[0] == kUnknownSize ? kUnknownSize : inShape[0] / groupSize)}; outShape.append(inShape.begin() + 1, inShape.end()); SmallVector indices{{0, 1}}; for (auto i = 2; i <= (long)inShape.size(); i++) indices.push_back({i}); auto retType = inType.clone(outShape); return rewriter.create(loc, retType, tensor, indices); }; Value paddedInputExpanded = expandGroups(paddedInput, 1); Value weightExpanded = expandWeight(weight); Value outputTensorExpanded = expandGroups(outputTensor, 1); // TODO: add 1D and 3D case conv = rewriter .create( loc, outputTensorExpanded.getType(), ValueRange{paddedInputExpanded, weightExpanded}, outputTensorExpanded, stridesAttr, dilationAttr) .getResult(0); SmallVector indices{{0}, {1, 2}}; for (auto dim = 3; dim <= (int64_t)inRank; dim++) indices.push_back({dim}); conv = rewriter.create( loc, outputTensor.getType(), conv, indices); } Type newResultType = getTypeConverter()->convertType(op.getType()); rewriter.replaceOpWithNewOp(op, newResultType, conv); return success(); } }; } // namespace void mlir::torch::torch_to_linalg::populateLinearPatternsAndLegality( TypeConverter &typeConverter, RewritePatternSet &patterns, ConversionTarget &target) { MLIRContext *context = patterns.getContext(); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); }