# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # Also available under a BSD-style license. See LICENSE. import torch from torch_mlir_e2e_test.torchscript.framework import TestUtils from torch_mlir_e2e_test.torchscript.registry import register_test_case from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export # ============================================================================== class SqueezeStaticModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([1, 7, 1, 3, 1], torch.float32, True), ]) def forward(self, a): return torch.squeeze(a) @register_test_case( module_factory=lambda: SqueezeStaticModule()) def SqueezeModule_static(module, tu: TestUtils): module.forward(tu.rand(1, 7, 1, 3, 1)) # ============================================================================== class SqueezeAllUnitDimModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([1, 1], torch.float32, True), ]) def forward(self, a): return torch.squeeze(a) @register_test_case( module_factory=lambda: SqueezeAllUnitDimModule()) def SqueezeModule_allUnitDim(module, tu: TestUtils): module.forward(tu.rand(1, 1)) # ============================================================================== class SqueezeBroadcastModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([], torch.float32, True), ]) def forward(self, a, b): return a * b.squeeze() @register_test_case( module_factory=lambda: SqueezeBroadcastModule()) def SqueezeModule_broadcast(module, tu: TestUtils): module.forward(tu.rand(4, 3), tu.rand()) # ============================================================================== class SqueezeDimStaticModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([1, 7], torch.float32, True), ]) def forward(self, a): return torch.squeeze(a, 0) @register_test_case( module_factory=lambda: SqueezeDimStaticModule()) def SqueezeDimModule_static(module, tu: TestUtils): module.forward(tu.rand(1, 7)) # ============================================================================== class SqueezeDimDynamicModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, 1, 384, -1, 1], torch.float32, True), ]) def forward(self, a): return torch.squeeze(a, 4) @register_test_case( module_factory=lambda: SqueezeDimDynamicModule()) def SqueezeDimModule_dynamic(module, tu: TestUtils): module.forward(tu.rand(8, 1, 384, 12, 1)) # ============================================================================== class SqueezeDimNegDimModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([1, -1, 1, 384, -1, 1], torch.float32, True), ]) def forward(self, a): return torch.squeeze(a, -6) @register_test_case( module_factory=lambda: SqueezeDimNegDimModule()) def SqueezeDimModule_negDim(module, tu: TestUtils): module.forward(tu.rand(1, 8, 1, 384, 12, 1)) # ============================================================================== class SqueezeDimIdentityModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([4, 1, -1], torch.float32, True), ]) def forward(self, a): return torch.squeeze(a, 0) @register_test_case( module_factory=lambda: SqueezeDimIdentityModule()) def SqueezeDimModule_identity(module, tu: TestUtils): module.forward(tu.rand(4, 1, 3)) # ============================================================================== class SqueezeDimUnitDimModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([1], torch.float32, True), ]) def forward(self, a): return torch.squeeze(a, 0) @register_test_case( module_factory=lambda: SqueezeDimUnitDimModule()) def SqueezeDimModule_unitDim(module, tu: TestUtils): module.forward(tu.rand(1))