# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # Also available under a BSD-style license. See LICENSE. import torch from torch_mlir_e2e_test.torchscript.framework import TestUtils from torch_mlir_e2e_test.torchscript.registry import register_test_case from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export # TODO: Support scalar !torch.int/!torch.float variants. Add support to # ReduceOpVariants to implement them in terms of the tensor-only variants + # torch.prim.NumToTensor. # TODO: This is pretty verbose. Can we have a helper to reduce # the boilerplate? # ============================================================================== class ElementwiseUnaryModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, a): return torch.tanh(a) @register_test_case(module_factory=lambda: ElementwiseUnaryModule()) def ElementwiseUnaryModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) # ============================================================================== class ElementwiseBinaryModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1], torch.float32, True), ]) def forward(self, a, b): return a * b @register_test_case(module_factory=lambda: ElementwiseBinaryModule()) def ElementwiseBinaryModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4), tu.rand(4)) # ============================================================================== class ElementwiseTernaryModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ([-1], torch.float32, True), ]) def forward(self, a, b, c): return torch.lerp(a, b, c) @register_test_case(module_factory=lambda: ElementwiseTernaryModule()) def ElementwiseTernaryModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4, 5), tu.rand(4, 5), tu.rand(5)) # ============================================================================== # Addition is an interesting special case of a binary op, because under the hood # it carries a third scalar "alpha" parameter, which needs special handling. class ElementwiseAddModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1], torch.float32, True), ([], torch.float32, True), ]) def forward(self, a, b): return a + b @register_test_case(module_factory=lambda: ElementwiseAddModule()) def ElementwiseAddModule_basic(module, tu: TestUtils): module.forward(tu.rand(4), tu.rand()) # ============================================================================== class ElementwiseUnsqueezeBroadcastModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1], torch.float32, True), ([], torch.float32, True), ]) def forward(self, a, b): return a * b.unsqueeze(0) @register_test_case( module_factory=lambda: ElementwiseUnsqueezeBroadcastModule()) def ElementwiseUnsqueezeBroadcastModule_basic(module, tu: TestUtils): module.forward(tu.rand(4), tu.rand()) # ============================================================================== class ElementwiseUnsqueezeNegDimsModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, a): # As mentioned in `unsqueeze` docstring, # valid dim values are [-input.dim()-1, input.dim()+1). # This tests the lower bound return torch.unsqueeze(a, -3) @register_test_case( module_factory=lambda: ElementwiseUnsqueezeNegDimsModule()) def ElementwiseUnsqueezeNegDimsModule_basic(module, tu: TestUtils): module.forward(tu.rand(4, 3)) # ============================================================================== class ElementwiseFlattenBroadcastModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1], torch.float32, True), ([], torch.float32, True), ]) def forward(self, a, b): return a * b.flatten(-1, -1) @register_test_case(module_factory=lambda: ElementwiseFlattenBroadcastModule()) def ElementwiseFlattenBroadcastModule_basic(module, tu: TestUtils): module.forward(tu.rand(6), tu.rand()) # ============================================================================== class ElementwiseReluModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.relu(x) @register_test_case(module_factory=lambda: ElementwiseReluModule()) def ElementwiseReluModule_basic(module, tu: TestUtils): module.forward(tu.rand(4, 2) - 0.5) # ============================================================================== class ElementwiseGeluModule(torch.nn.Module): def __init__(self): super().__init__() self.gelu = torch.nn.GELU() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return self.gelu(x) @register_test_case(module_factory=lambda: ElementwiseGeluModule()) def ElementwiseGeluModule_basic(module, tu: TestUtils): module.forward(2*tu.rand(5, 3) - 0.5) # ============================================================================== class ElementwiseSigmoidModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.sigmoid(x) @register_test_case(module_factory=lambda: ElementwiseSigmoidModule()) def ElementwiseSigmoidModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 5)) # ============================================================================== class ElementwiseMinimumModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ]) def forward(self, x, y): return torch.minimum(x, y) @register_test_case(module_factory=lambda: ElementwiseMinimumModule()) def ElementwiseMinimumModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 5), tu.rand(3, 5)) module.forward(tu.nans(3, 5), tu.rand(3, 5)) # ============================================================================== class ElementwiseMaximumModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ([-1, -1], torch.float32, True), ]) def forward(self, x, y): return torch.maximum(x, y) @register_test_case(module_factory=lambda: ElementwiseMaximumModule()) def ElementwiseMaximumModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 5), tu.rand(3, 5)) module.forward(tu.nans(3, 5), tu.rand(3, 5)) # ============================================================================== class ElementwiseClampModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): # TODO: It would be great to return all of these, so they get checked # individually, but RefBackend doesn't support multiple returns. # Instead, multiply them together, which has some chance of propagating # all the values. float_min = torch.clamp(x, min=-2.0) int_min = torch.clamp(x, min=-3) float_max = torch.clamp(x, max=2.0) int_max = torch.clamp(x, max=3) both = torch.clamp(x, min=-5, max=5) return float_min * int_min * float_max * int_max * both @register_test_case(module_factory=lambda: ElementwiseClampModule()) def ElementwiseClampModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 5, low=-10, high=10)) class RsubModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.rsub(x, 3.0, alpha=1.0) @register_test_case(module_factory=lambda: RsubModule()) def RsubModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) class RsubModule_noalpha(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, x): return torch.rsub(x, 2.0) @register_test_case(module_factory=lambda: RsubModule_noalpha()) def RsubModule_noalpha_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) class ElementwiseLogModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, a): return torch.log(a) @register_test_case(module_factory=lambda: ElementwiseLogModule()) def ElementwiseLogModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) class ElementwiseSqrtModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, a): return torch.sqrt(a) @register_test_case(module_factory=lambda: ElementwiseSqrtModule()) def ElementwiseSqrtModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4)) class ElementwiseFloorModule(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float32, True), ]) def forward(self, a): return torch.floor(a) @register_test_case(module_factory=lambda: ElementwiseFloorModule()) def ElementwiseFloorModule_basic(module, tu: TestUtils): module.forward(tu.rand(3, 4))