mirror of https://github.com/llvm/torch-mlir
546 lines
23 KiB
C++
546 lines
23 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Conversion/TorchToMhlo/TorchToMhlo.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "./MhloLegalizeUtils.h"
|
|
#include "./PopulatePatterns.h"
|
|
#include "mhlo/IR/hlo_ops.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "stablehlo/dialect/ChloOps.h"
|
|
#include "torch-mlir/Conversion/Utils/Utils.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h"
|
|
#include <iostream>
|
|
#include <numeric>
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
using namespace mlir::torch::torch_to_mhlo;
|
|
|
|
static Value createInitialValueForAtenPoolingOp(Operation *op, Type elementTy,
|
|
PatternRewriter &rewriter) {
|
|
auto constType = RankedTensorType::get({}, elementTy);
|
|
// Avg pooling
|
|
if (isa<AtenAdaptiveAvgPool2dOp, AtenAvgPool2dOp>(op)) {
|
|
if (elementTy.isa<mlir::FloatType>()) {
|
|
auto constAttr = DenseElementsAttr::get(
|
|
constType, {APFloat::getZero(
|
|
elementTy.cast<mlir::FloatType>().getFloatSemantics(),
|
|
/*negative=*/false)});
|
|
return rewriter.create<mhlo::ConstantOp>(op->getLoc(), constType,
|
|
constAttr);
|
|
} else if (elementTy.isa<mlir::IntegerType>() &&
|
|
elementTy.getIntOrFloatBitWidth() != 8) {
|
|
auto constAttr = DenseElementsAttr::get(
|
|
constType, {APInt::getZero(elementTy.getIntOrFloatBitWidth())});
|
|
return rewriter.create<mhlo::ConstantOp>(op->getLoc(), constType,
|
|
constAttr);
|
|
}
|
|
}
|
|
|
|
// Max pooling
|
|
if (isa<AtenMaxPool2dOp, AtenMaxPool2dWithIndicesOp>(op)) {
|
|
if (elementTy.isa<mlir::FloatType>()) {
|
|
auto constAttr = DenseElementsAttr::get(
|
|
constType, {APFloat::getLargest(
|
|
elementTy.cast<mlir::FloatType>().getFloatSemantics(),
|
|
/*negative=*/true)});
|
|
return rewriter.create<mhlo::ConstantOp>(op->getLoc(), constType,
|
|
constAttr);
|
|
} else if (elementTy.isa<mlir::IntegerType>() &&
|
|
elementTy.getIntOrFloatBitWidth() != 8) {
|
|
auto constAttr = DenseElementsAttr::get(
|
|
constType,
|
|
{APInt::getSignedMinValue(elementTy.getIntOrFloatBitWidth())});
|
|
return rewriter.create<mhlo::ConstantOp>(op->getLoc(), constType,
|
|
constAttr);
|
|
}
|
|
}
|
|
op->emitError("unimplemented lowering in AtenPoolingOp");
|
|
return nullptr;
|
|
}
|
|
|
|
// AtenMaxPool2dOp
|
|
template <>
|
|
LogicalResult ConvertAtenOp<AtenMaxPool2dOp>::matchAndRewrite(
|
|
AtenMaxPool2dOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Value input = adaptor.getSelf();
|
|
auto inputTy = input.getType().cast<RankedTensorType>();
|
|
auto inputElemTy = inputTy.getElementType();
|
|
|
|
auto inputRank = inputTy.getRank();
|
|
auto outTy =
|
|
getTypeConverter()->convertType(op.getType()).cast<RankedTensorType>();
|
|
|
|
if (inputRank <= 2) {
|
|
return op.emitError(
|
|
"max_pooling2d only supports inputs with rank higher than 2");
|
|
}
|
|
SmallVector<int64_t, 2> padding, kernelSize, stride, dilation;
|
|
bool ceilMode = false;
|
|
|
|
if (!(matchPattern(op.getKernelSize(),
|
|
m_TorchListOfConstantInts(kernelSize)))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "non-const int kernel size unsupported!");
|
|
}
|
|
if (!(matchPattern(op.getStride(), m_TorchListOfConstantInts(stride)))) {
|
|
return rewriter.notifyMatchFailure(op, "non-const int stride unsupported!");
|
|
}
|
|
if (!(matchPattern(op.getPadding(), m_TorchListOfConstantInts(padding)))) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"non-const int padding unsupported!");
|
|
}
|
|
if (!(matchPattern(op.getDilation(), m_TorchListOfConstantInts(dilation)))) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"non-const int dilation unsupported!");
|
|
}
|
|
if (!(matchPattern(op.getCeilMode(), m_TorchConstantBool(&ceilMode)))) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"non-const bool ceil_mode unsupported!");
|
|
}
|
|
|
|
// prepend 1 to kernelSize, stride, dilation until they are of same rank as
|
|
// input
|
|
SmallVector<int64_t> mhloStride(inputRank, 1);
|
|
SmallVector<int64_t> mhloDilation(inputRank, 1);
|
|
SmallVector<int64_t> mhloKernelSize(inputRank, 1);
|
|
SmallVector<int64_t> mhloPadding(inputRank * 2, 0);
|
|
std::copy(dilation.begin(), dilation.end(),
|
|
mhloDilation.begin() + inputRank - 2);
|
|
std::copy(stride.begin(), stride.end(), mhloStride.begin() + inputRank - 2);
|
|
std::copy(kernelSize.begin(), kernelSize.end(),
|
|
mhloKernelSize.begin() + inputRank - 2);
|
|
|
|
Value initVal = createInitialValueForAtenPoolingOp(op, inputElemTy, rewriter);
|
|
|
|
mhloPadding[mhloPadding.size() - 4] = padding[0];
|
|
mhloPadding[mhloPadding.size() - 3] = padding[0];
|
|
mhloPadding[mhloPadding.size() - 2] = padding[1];
|
|
mhloPadding[mhloPadding.size() - 1] = padding[1];
|
|
|
|
DenseIntElementsAttr windowDimensions = DenseIntElementsAttr::get(
|
|
RankedTensorType::get({static_cast<int64_t>(mhloKernelSize.size())},
|
|
rewriter.getI64Type()),
|
|
mhloKernelSize);
|
|
DenseIntElementsAttr windowStrides = DenseIntElementsAttr::get(
|
|
RankedTensorType::get({static_cast<int64_t>(mhloStride.size())},
|
|
rewriter.getI64Type()),
|
|
mhloStride);
|
|
DenseIntElementsAttr baseDilations;
|
|
DenseIntElementsAttr windowDilations = DenseIntElementsAttr::get(
|
|
RankedTensorType::get({static_cast<int64_t>(mhloDilation.size())},
|
|
rewriter.getI64Type()),
|
|
mhloDilation);
|
|
DenseIntElementsAttr pad = DenseIntElementsAttr::get(
|
|
RankedTensorType::get(
|
|
{static_cast<int64_t>(inputRank), static_cast<int64_t>(2)},
|
|
rewriter.getI64Type()),
|
|
mhloPadding);
|
|
auto reduceWindowOp = rewriter.create<mhlo::ReduceWindowOp>(
|
|
op->getLoc(), outTy, input, initVal, windowDimensions, windowStrides,
|
|
baseDilations, windowDilations, pad);
|
|
|
|
Block &block = reduceWindowOp.getBody().emplaceBlock();
|
|
|
|
auto blockArgumentTy = RankedTensorType::get({}, inputElemTy);
|
|
block.addArgument(blockArgumentTy, op->getLoc());
|
|
block.addArgument(blockArgumentTy, op->getLoc());
|
|
|
|
auto *firstArg = block.args_begin();
|
|
auto secondArg = block.args_rbegin();
|
|
|
|
{
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(&block);
|
|
Value result =
|
|
rewriter.create<mhlo::MaxOp>(op->getLoc(), *firstArg, *secondArg);
|
|
rewriter.create<mhlo::ReturnOp>(op->getLoc(), result);
|
|
}
|
|
|
|
rewriter.replaceOp(op, reduceWindowOp.getResults());
|
|
return success();
|
|
}
|
|
|
|
// AtenMaxPool2dWithIndicesOp
|
|
template <>
|
|
LogicalResult ConvertAtenOp<AtenMaxPool2dWithIndicesOp>::matchAndRewrite(
|
|
AtenMaxPool2dWithIndicesOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Value input = adaptor.getSelf();
|
|
auto inputTy = input.getType().cast<RankedTensorType>();
|
|
auto inputElemTy = inputTy.getElementType();
|
|
auto inputShape = inputTy.getShape();
|
|
auto inputRank = inputTy.getRank();
|
|
auto outValTy =
|
|
getTypeConverter()->convertType(op.getType(0)).cast<RankedTensorType>();
|
|
auto outIdxTy =
|
|
getTypeConverter()->convertType(op.getType(1)).cast<RankedTensorType>();
|
|
|
|
if (inputRank <= 2) {
|
|
return op.emitError(
|
|
"max_pooling2d only supports inputs with rank higher than 2");
|
|
}
|
|
SmallVector<int64_t, 2> padding, kernelSize, stride, dilation;
|
|
bool ceilMode = false;
|
|
|
|
if (!(matchPattern(op.getKernelSize(),
|
|
m_TorchListOfConstantInts(kernelSize)))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "non-const int kernel size unsupported!");
|
|
}
|
|
if (!(matchPattern(op.getStride(), m_TorchListOfConstantInts(stride)))) {
|
|
return rewriter.notifyMatchFailure(op, "non-const int stride unsupported!");
|
|
}
|
|
if (!(matchPattern(op.getPadding(), m_TorchListOfConstantInts(padding)))) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"non-const int padding unsupported!");
|
|
}
|
|
if (!(matchPattern(op.getDilation(), m_TorchListOfConstantInts(dilation)))) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"non-const int dilation unsupported!");
|
|
}
|
|
if (!(matchPattern(op.getCeilMode(), m_TorchConstantBool(&ceilMode)))) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"non-const bool ceil_mode unsupported!");
|
|
}
|
|
|
|
// prepend 1 to kernelSize, stride, dilation until they are of same rank as
|
|
// input
|
|
SmallVector<int64_t> mhloStride(inputRank, 1);
|
|
SmallVector<int64_t> mhloDilation(inputRank, 1);
|
|
SmallVector<int64_t> mhloKernelSize(inputRank, 1);
|
|
SmallVector<int64_t> mhloPadding(inputRank * 2, 0);
|
|
std::copy(dilation.begin(), dilation.end(),
|
|
mhloDilation.begin() + inputRank - 2);
|
|
std::copy(stride.begin(), stride.end(), mhloStride.begin() + inputRank - 2);
|
|
std::copy(kernelSize.begin(), kernelSize.end(),
|
|
mhloKernelSize.begin() + inputRank - 2);
|
|
|
|
Value initVal = createInitialValueForAtenPoolingOp(op, inputElemTy, rewriter);
|
|
|
|
mhloPadding[mhloPadding.size() - 4] = padding[0];
|
|
mhloPadding[mhloPadding.size() - 3] = padding[0];
|
|
mhloPadding[mhloPadding.size() - 2] = padding[1];
|
|
mhloPadding[mhloPadding.size() - 1] = padding[1];
|
|
|
|
DenseIntElementsAttr windowDimensions = DenseIntElementsAttr::get(
|
|
RankedTensorType::get({static_cast<int64_t>(mhloKernelSize.size())},
|
|
rewriter.getI64Type()),
|
|
mhloKernelSize);
|
|
DenseIntElementsAttr windowStrides = DenseIntElementsAttr::get(
|
|
RankedTensorType::get({static_cast<int64_t>(mhloStride.size())},
|
|
rewriter.getI64Type()),
|
|
mhloStride);
|
|
DenseIntElementsAttr baseDilations;
|
|
DenseIntElementsAttr windowDilations = DenseIntElementsAttr::get(
|
|
RankedTensorType::get({static_cast<int64_t>(mhloDilation.size())},
|
|
rewriter.getI64Type()),
|
|
mhloDilation);
|
|
DenseIntElementsAttr pad = DenseIntElementsAttr::get(
|
|
RankedTensorType::get(
|
|
{static_cast<int64_t>(inputRank), static_cast<int64_t>(2)},
|
|
rewriter.getI64Type()),
|
|
mhloPadding);
|
|
|
|
const auto &options = getOptions();
|
|
auto inputShapeInfo =
|
|
mhlo::getDimSizesOfTensor(rewriter, op, input, options.dimSizeIndexBits);
|
|
if (failed(inputShapeInfo)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed to get dimension sizes of the input");
|
|
}
|
|
auto inputShapeVec = *inputShapeInfo;
|
|
auto inputShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
|
|
op->getLoc(), inputShapeVec);
|
|
|
|
SmallVector<Value> initIndexShapeVec;
|
|
for (int64_t i = 0; i < inputRank - 2; i++)
|
|
initIndexShapeVec.push_back(inputShapeVec[i]);
|
|
initIndexShapeVec.push_back(rewriter.create<mlir::arith::MulIOp>(
|
|
op->getLoc(), inputShapeVec[inputRank - 1],
|
|
inputShapeVec[inputRank - 2]));
|
|
auto initIndexShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
|
|
op->getLoc(), initIndexShapeVec);
|
|
|
|
SmallVector<int64_t> initIndexShapeForType(inputShape.begin(),
|
|
inputShape.end() - 2);
|
|
if (inputShape[inputRank - 1] == ShapedType::kDynamic ||
|
|
inputShape[inputRank - 2] == ShapedType::kDynamic) {
|
|
initIndexShapeForType.push_back(ShapedType::kDynamic);
|
|
} else {
|
|
initIndexShapeForType.push_back(inputShape[inputRank - 1] *
|
|
inputShape[inputRank - 2]);
|
|
}
|
|
|
|
auto initIndexTensor =
|
|
rewriter
|
|
.create<mhlo::DynamicIotaOp>(
|
|
op->getLoc(),
|
|
RankedTensorType::get(initIndexShapeForType,
|
|
rewriter.getI64Type()),
|
|
initIndexShapeTensor, static_cast<uint64_t>(inputRank - 2))
|
|
.getResult();
|
|
|
|
auto indexTensor =
|
|
rewriter
|
|
.create<mhlo::DynamicReshapeOp>(
|
|
op->getLoc(),
|
|
RankedTensorType::get(inputShape, rewriter.getI64Type()),
|
|
initIndexTensor, inputShapeTensor)
|
|
.getResult();
|
|
|
|
Value initIdx = mhlo::getConstTensor<int64_t>(rewriter, op, {0}, {}).value();
|
|
|
|
auto reduceWindowOp = rewriter.create<mhlo::ReduceWindowOp>(
|
|
op->getLoc(), mlir::TypeRange{outValTy, outIdxTy},
|
|
mlir::ValueRange{input, indexTensor}, mlir::ValueRange{initVal, initIdx},
|
|
windowDimensions, windowStrides, baseDilations, windowDilations, pad);
|
|
|
|
Block &block = reduceWindowOp.getBody().emplaceBlock();
|
|
|
|
// Add bb argument
|
|
auto blockValArgumentType = RankedTensorType::get({}, inputElemTy);
|
|
auto blockIdxArgumentType = RankedTensorType::get({}, rewriter.getI64Type());
|
|
auto compareResultType = RankedTensorType::get({}, rewriter.getI1Type());
|
|
block.addArgument(blockValArgumentType, op->getLoc());
|
|
block.addArgument(blockIdxArgumentType, op->getLoc());
|
|
block.addArgument(blockValArgumentType, op->getLoc());
|
|
block.addArgument(blockIdxArgumentType, op->getLoc());
|
|
auto *firstValArg = block.args_begin();
|
|
auto *firstIdxArg = std::next(firstValArg);
|
|
auto *secondValArg = std::next(firstIdxArg);
|
|
auto *secondIdxArg = std::next(secondValArg);
|
|
|
|
mhlo::ComparisonTypeAttr compareTypeAttr;
|
|
if (inputTy.getElementType().isa<mlir::FloatType>()) {
|
|
compareTypeAttr = mhlo::ComparisonTypeAttr::get(
|
|
rewriter.getContext(), mhlo::ComparisonType::FLOAT);
|
|
} else if (inputTy.getElementType().isa<mlir::IntegerType>()) {
|
|
compareTypeAttr = mhlo::ComparisonTypeAttr::get(
|
|
rewriter.getContext(), mhlo::ComparisonType::SIGNED);
|
|
}
|
|
mhlo::ComparisonDirectionAttr compareGeDirectionAttr =
|
|
mhlo::ComparisonDirectionAttr::get(rewriter.getContext(),
|
|
mhlo::ComparisonDirection::GE);
|
|
mhlo::ComparisonDirectionAttr compareEqDirectionAttr =
|
|
mhlo::ComparisonDirectionAttr::get(rewriter.getContext(),
|
|
mhlo::ComparisonDirection::EQ);
|
|
|
|
{
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(&block);
|
|
|
|
Value compareGeResult = rewriter.create<mhlo::CompareOp>(
|
|
op->getLoc(), compareResultType, *firstValArg, *secondValArg,
|
|
compareGeDirectionAttr, compareTypeAttr);
|
|
Value retValResult = rewriter.create<mhlo::SelectOp>(
|
|
op->getLoc(), compareGeResult, *firstValArg, *secondValArg);
|
|
|
|
// Get smaller index if compared values are equal.
|
|
Value compareEqResult = rewriter.create<mhlo::CompareOp>(
|
|
op->getLoc(), compareResultType, *firstValArg, *secondValArg,
|
|
compareEqDirectionAttr, compareTypeAttr);
|
|
Value minIdx =
|
|
rewriter.create<mhlo::MinOp>(op->getLoc(), *firstIdxArg, *secondIdxArg);
|
|
Value idxWithGeVal = rewriter.create<mhlo::SelectOp>(
|
|
op->getLoc(), compareGeResult, *firstIdxArg, *secondIdxArg);
|
|
Value retIdxResult = rewriter.create<mhlo::SelectOp>(
|
|
op->getLoc(), compareEqResult, minIdx, idxWithGeVal);
|
|
|
|
rewriter.create<mhlo::ReturnOp>(
|
|
op->getLoc(), mlir::ValueRange{retValResult, retIdxResult});
|
|
}
|
|
|
|
rewriter.replaceOp(op, reduceWindowOp.getResults());
|
|
return success();
|
|
}
|
|
|
|
// AtenAvgPool2dOp
|
|
template <>
|
|
LogicalResult ConvertAtenOp<AtenAvgPool2dOp>::matchAndRewrite(
|
|
AtenAvgPool2dOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Value input = adaptor.getSelf();
|
|
auto inputTy = input.getType().cast<RankedTensorType>();
|
|
auto inputElemTy = inputTy.getElementType();
|
|
auto inputRank = inputTy.getRank();
|
|
auto outTy =
|
|
getTypeConverter()->convertType(op.getType()).cast<RankedTensorType>();
|
|
auto outShape = outTy.getShape();
|
|
|
|
if (inputRank <= 2) {
|
|
return op.emitError(
|
|
"avg_pooling2d only supports inputs with rank higher than 2");
|
|
}
|
|
SmallVector<int64_t, 2> padding, kernelSize, stride;
|
|
bool ceilMode = false;
|
|
bool countIncludePad = true;
|
|
|
|
if (!(matchPattern(op.getKernelSize(),
|
|
m_TorchListOfConstantInts(kernelSize)))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "non-const int kernel size unsupported!");
|
|
}
|
|
if (!(matchPattern(op.getStride(), m_TorchListOfConstantInts(stride)))) {
|
|
return rewriter.notifyMatchFailure(op, "non-const int stride unsupported!");
|
|
}
|
|
if (!(matchPattern(op.getPadding(), m_TorchListOfConstantInts(padding)))) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"non-const int padding unsupported!");
|
|
}
|
|
if (!(matchPattern(op.getCeilMode(), m_TorchConstantBool(&ceilMode)))) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"non-const bool ceil_mode unsupported!");
|
|
}
|
|
if (!(matchPattern(op.getCountIncludePad(),
|
|
m_TorchConstantBool(&countIncludePad)))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "non-const bool count_include_pad unsupported!");
|
|
}
|
|
if (succeeded(checkNotNone(rewriter, op, op.getDivisorOverride()))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "only None divisor_override supported for now!");
|
|
}
|
|
|
|
// prepend 1 to kernelSize, stride, dilation until they are of same rank as
|
|
// input
|
|
SmallVector<int64_t> mhloStride(inputRank, 1);
|
|
SmallVector<int64_t> mhloDilation(inputRank, 1);
|
|
SmallVector<int64_t> mhloKernelSize(inputRank, 1);
|
|
SmallVector<int64_t> mhloPadding(inputRank * 2, 0);
|
|
|
|
std::copy(stride.begin(), stride.end(), mhloStride.begin() + inputRank - 2);
|
|
std::copy(kernelSize.begin(), kernelSize.end(),
|
|
mhloKernelSize.begin() + inputRank - 2);
|
|
mhloPadding[mhloPadding.size() - 4] = padding[0];
|
|
mhloPadding[mhloPadding.size() - 3] = padding[0];
|
|
mhloPadding[mhloPadding.size() - 2] = padding[1];
|
|
mhloPadding[mhloPadding.size() - 1] = padding[1];
|
|
|
|
Value initVal = createInitialValueForAtenPoolingOp(op, inputElemTy, rewriter);
|
|
|
|
DenseIntElementsAttr windowDimensions = DenseIntElementsAttr::get(
|
|
RankedTensorType::get({static_cast<int64_t>(mhloKernelSize.size())},
|
|
rewriter.getI64Type()),
|
|
mhloKernelSize);
|
|
DenseIntElementsAttr windowStrides = DenseIntElementsAttr::get(
|
|
RankedTensorType::get({static_cast<int64_t>(mhloStride.size())},
|
|
rewriter.getI64Type()),
|
|
mhloStride);
|
|
DenseIntElementsAttr baseDilations;
|
|
DenseIntElementsAttr windowDilations = DenseIntElementsAttr::get(
|
|
RankedTensorType::get({static_cast<int64_t>(mhloDilation.size())},
|
|
rewriter.getI64Type()),
|
|
mhloDilation);
|
|
DenseIntElementsAttr pad = DenseIntElementsAttr::get(
|
|
RankedTensorType::get(
|
|
{static_cast<int64_t>(inputRank), static_cast<int64_t>(2)},
|
|
rewriter.getI64Type()),
|
|
mhloPadding);
|
|
|
|
auto reduceWindowSum = rewriter.create<mhlo::ReduceWindowOp>(
|
|
op->getLoc(), outTy, input, initVal, windowDimensions, windowStrides,
|
|
baseDilations, windowDilations, pad);
|
|
|
|
Block &sumBlock = reduceWindowSum.getBody().emplaceBlock();
|
|
|
|
// Add bb argument
|
|
auto blockArgumentType = RankedTensorType::get({}, inputElemTy);
|
|
sumBlock.addArgument(blockArgumentType, op->getLoc());
|
|
sumBlock.addArgument(blockArgumentType, op->getLoc());
|
|
auto *firstArg = sumBlock.args_begin();
|
|
auto secondArg = sumBlock.args_rbegin();
|
|
|
|
{
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(&sumBlock);
|
|
|
|
Value sumResult =
|
|
rewriter.create<mhlo::AddOp>(op->getLoc(), *firstArg, *secondArg);
|
|
rewriter.create<mhlo::ReturnOp>(op->getLoc(), sumResult);
|
|
}
|
|
|
|
// Use kernel size as the divisor
|
|
if (countIncludePad) {
|
|
Value divisor = mhlo::getConstTensor<int64_t>(
|
|
rewriter, op, {kernelSize[0] * kernelSize[1]}, {})
|
|
.value();
|
|
divisor = mhlo::promoteType(rewriter, divisor, outTy);
|
|
DenseIntElementsAttr bcastDimensions;
|
|
rewriter.replaceOpWithNewOp<mlir::chlo::BroadcastDivOp>(
|
|
op, outTy, reduceWindowSum.getResult(0), divisor, bcastDimensions);
|
|
return success();
|
|
}
|
|
|
|
// Use another mhlo.ReduceWindowOp to get the divisor
|
|
Value windowSizeConst =
|
|
mhlo::getConstTensor<float>(rewriter, op, {1.0}, {}).value();
|
|
windowSizeConst = mhlo::promoteType(rewriter, windowSizeConst, outTy);
|
|
const auto &options = getOptions();
|
|
auto inputShapeVec =
|
|
*mhlo::getDimSizesOfTensor(rewriter, op, input, options.dimSizeIndexBits);
|
|
auto inputShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
|
|
op->getLoc(), inputShapeVec);
|
|
|
|
windowSizeConst = rewriter.create<mhlo::DynamicBroadcastInDimOp>(
|
|
op->getLoc(),
|
|
RankedTensorType::get(inputTy.getShape(), outTy.getElementType()),
|
|
windowSizeConst, inputShapeTensor, rewriter.getI64TensorAttr({}));
|
|
|
|
Value zero = createInitialValueForAtenPoolingOp(op, inputElemTy, rewriter);
|
|
auto reduceWindowSize = rewriter.create<mhlo::ReduceWindowOp>(
|
|
op->getLoc(), RankedTensorType::get(outShape, inputElemTy),
|
|
windowSizeConst, zero, windowDimensions, windowStrides, baseDilations,
|
|
windowDilations, pad);
|
|
|
|
Block &sizeBlock = reduceWindowSize.getBody().emplaceBlock();
|
|
|
|
// Add bb argument
|
|
blockArgumentType = RankedTensorType::get({}, inputElemTy);
|
|
sizeBlock.addArgument(blockArgumentType, op->getLoc());
|
|
sizeBlock.addArgument(blockArgumentType, op->getLoc());
|
|
firstArg = sizeBlock.args_begin();
|
|
secondArg = sizeBlock.args_rbegin();
|
|
|
|
{
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(&sizeBlock);
|
|
|
|
Value sumResult =
|
|
rewriter.create<mhlo::AddOp>(op->getLoc(), *firstArg, *secondArg);
|
|
rewriter.create<mhlo::ReturnOp>(op->getLoc(), sumResult);
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<mhlo::DivOp>(
|
|
op, outTy, reduceWindowSum.getResult(0), reduceWindowSize.getResult(0));
|
|
return success();
|
|
}
|
|
|
|
void mlir::torch::torch_to_mhlo::populatePoolingOpPatternsAndLegality(
|
|
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
|
ConversionTarget &target, const TorchToMhloOptions &options) {
|
|
MLIRContext *context = patterns.getContext();
|
|
target.addIllegalOp<AtenMaxPool2dOp>();
|
|
patterns.add<ConvertAtenOp<AtenMaxPool2dOp>>(typeConverter, context, options);
|
|
target.addIllegalOp<AtenAvgPool2dOp>();
|
|
patterns.add<ConvertAtenOp<AtenAvgPool2dOp>>(typeConverter, context, options);
|
|
target.addIllegalOp<AtenMaxPool2dWithIndicesOp>();
|
|
patterns.add<ConvertAtenOp<AtenMaxPool2dWithIndicesOp>>(typeConverter,
|
|
context, options);
|
|
}
|